Площадь правильного треугольника S авс=( а квадрат)*(корень из3)/4. Площадь полной поверхности тетраэдра S= 4Sавс=а квадрат корней из 3. Где а сторона правильного треугольника. Проведём высоту h=ВК на АС в треугольнике АВС и Н=ДО высоту тетраэдра.Она приходит в точку О которая в правильном треугольнике является одновременно медианой, биссектрисой и цетром вписанной и описанной окружности. Причём ОВ/ОК=2/1. Или ОВ=2/3h=а/корень из 3. Где h высота иреугольника АВС. По теореме Пифагора высота тетраэдра H =корень из(ВД квадрат-ОВ квадрат)=корень из(а квадрат-а квадрат/3)=(а*корень из 2)/корень из 3. Высота треугольника АВС h=а*cos30=(а*корень из 3)/2. Площадь сечения равна Sкдв=1/2h*H=(а квадрат)*(корень из 2)/4. По условию площадь сечения дана (4 корня из 2)квадрат. Тогда (4 корня из2)квадрат=(а квадрат)*(корень из 2)/4. Отсюда а квадрат =128/корень из 2. Тогда полная поверхность тетраэдра S=(а квадрат)*(корень из 3)=128*(корень из 3 )/(корень из 2).
Поделитесь своими знаниями, ответьте на вопрос:
Как на русском будет каïgшино?
1.Поскольку М равноудалена от вершин АВС, то её проекция О на поскость ABC тоже равноудалена от вершин, то есть О - центр окружности, описанной вокруг прямоугольного треугольника АВС. Поэтому О лежит точно в середине гипотенузы.
СО перпендикулярно АВ, поскольку треугольник равнобедренный, и медиана одновременно - высота. МО перпендикулярно СО, поскольку МО вообще перпендикулярно плоскости АВС. Поэтому плоскости АВС и АМС взамино перпендикулярны, а угол МОС - их двугранный угол, равный, само собой, 90 градусов. Далее "пп" означает "перпендикулярно" "тр" - "треугольник" "птр" - прямоугольный "тр" :)))
2. ОР пп АВ; СР = РВ = РО = 2; МО = 2*SQRT(3); Поэтому tg(MPO) = 1/SQRT(3);
Угол МРО = 60 градусам.
3. В птр OMC СО = АС*sin(45) = 2*SQRT(2); MO = 2*SQRT(3); tg(MCO) = SQRT(3/2);
4. Достаточно найти расстояние от точки О до плоскости МСВ, поскольку ЕО параллельно ВС, а - следовательно, и всей плоскости ВМС.
К - высота в птр ОМР,
ОК = ОР*sin(MPO) = 2*SQRT(3)/2 = SQRT(3)