3 АВ=ВМ, т.к. угол М тоже 45°, тогда МС=ВМ-3=АВ-3, а периметр 2АВ+2(АВ+МС)=24; 2АВ+2(АВ+АВ-3)=24; 6АВ-6=24; АВ=30/6=5/см/, АВ= СD=5см; тогда МС=5-3=2/см/, AD=ВС=5+2=7/см/
4. ∠ОКР=10° как внутр. накрест лежащие при MN║РК и секущей NK;
∠ОКМ=90°-10°=80°;
∠ОКМ=∠ОNP=80°как внутр. накрест лежащие при MК║NР и и секущей NK;
∠NPK=∠NMK=∠NPK=90°, т.к. противолежащие углы в параллелограмме равны. но тогда это треугольник, в нем диагонали равны и в точке пересечения делятся пополам.
∠ОМК=∠ОКМ=80°, ∠ОМN=∠ONM=10°; ∠МОN=∠РОК=180°-10°-10°=160°, рвны как вертикальные, а другая пара вертикальных при вершине О равна по 20°, можно было ее получить и по свойству внешнего угла при вершине О.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Угол А равен углу B равен углу C равен 90 градусов AC перпендикулярна BD доказать что ABCD квадрат
3 АВ=ВМ, т.к. угол М тоже 45°, тогда МС=ВМ-3=АВ-3, а периметр 2АВ+2(АВ+МС)=24; 2АВ+2(АВ+АВ-3)=24; 6АВ-6=24; АВ=30/6=5/см/, АВ= СD=5см; тогда МС=5-3=2/см/, AD=ВС=5+2=7/см/
4. ∠ОКР=10° как внутр. накрест лежащие при MN║РК и секущей NK;
∠ОКМ=90°-10°=80°;
∠ОКМ=∠ОNP=80°как внутр. накрест лежащие при MК║NР и и секущей NK;
∠NPK=∠NMK=∠NPK=90°, т.к. противолежащие углы в параллелограмме равны. но тогда это треугольник, в нем диагонали равны и в точке пересечения делятся пополам.
∠ОМК=∠ОКМ=80°, ∠ОМN=∠ONM=10°; ∠МОN=∠РОК=180°-10°-10°=160°, рвны как вертикальные, а другая пара вертикальных при вершине О равна по 20°, можно было ее получить и по свойству внешнего угла при вершине О.