Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
Поделитесь своими знаниями, ответьте на вопрос:
Геометрия 8класРешите с пояснениями
Длина перпендикуляра, опущенного из данной точки на прямую, называется расстоянием от точки до прямой. Расстоянием между параллельными прямыми называется расстояние от какой-нибудь точки одной прямой до другой прямой.
Рассмотрим прямоугольный треугольник АВС, в котором угол А-прямой, угол В=30 градусов и значит угол С=60градусов, Докажем что ас = 1/2ВС
Приложим к треугольнику АВС равный ему треугольник АВД. Получим треугольник ВСД в котором угол В=углу Д=60градусов поэтому ДС=ВС но АС=1/2ДС следовательно АС1/2ВС что и ьребовалось доказать.
Если катет прямоугольного треугольника равен половине гипотенузе, то угол лежащий против этого угла равен 30 градусов.
Рассмотрим прямоугольный треугольник авс у которого катет АС равен половине гипотенузы ВС.
Приложим к треугольнику АВС равный ему треугольник АВД. Получим равносторонний треугольник ВСД. Углы равностороннего треугольника равны друг другу, поэтому каждый из углов равен 60 градусов. в ЧАСТНОСТИ угол ДВС =60 градусов. Но угол ДВС =2угла АВС . Следовательно угол авс равен 30 градусов
первые два вложение к первой теореме вторые ко второй теореме