Нарисуем треугольник АВС ( С=90°) и вписанную в него окружность. Из центра в точки касания проведем радиусы, которые, как известно, перпендикулярны касательным в точках касания. Обозначим точки касания К на АС, М - на СБ, и Н на АВ. По свойству отрезков касательных АК=АН, МВ=ВН, и КС=СМ=r=2 Пусть МВ=х Тогда ВН=х, а АК=АН=12-х АС=12-х+2=14-х ВС=х+2 По т.Пифагора АС²+ВС²=АВ² (14-х)²+(2+х)²=144⇒ x² - 12*x + 28 = 0 D=32 х₁=(12+ 2√8):2=6 + √8 х₂=6-√8 ВС=6 + √8+2=8+√8 АС=14-(6 + √8)=8-√8 S (АВС)=АС*ВС:2=(8+√8)(8-√8) S (АВС)=(64-8):2=28 (единиц площади) --- Площадь будет такой же, если используем второе значение х₂=6-√8
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
По данным рисунка найдите диаметр окружности, если точка О центр окружности
Из центра в точки касания проведем радиусы, которые, как известно, перпендикулярны касательным в точках касания.
Обозначим точки касания К на АС, М - на СБ, и Н на АВ.
По свойству отрезков касательных
АК=АН, МВ=ВН, и КС=СМ=r=2
Пусть МВ=х
Тогда ВН=х, а АК=АН=12-х
АС=12-х+2=14-х
ВС=х+2
По т.Пифагора АС²+ВС²=АВ²
(14-х)²+(2+х)²=144⇒
x² - 12*x + 28 = 0
D=32
х₁=(12+ 2√8):2=6 + √8
х₂=6-√8
ВС=6 + √8+2=8+√8
АС=14-(6 + √8)=8-√8
S (АВС)=АС*ВС:2=(8+√8)(8-√8)
S (АВС)=(64-8):2=28 (единиц площади)
---
Площадь будет такой же, если используем второе значение х₂=6-√8