Площади подобных многоугольников относятся как квадрат коэффициента подобия k² = S₂/S₁ = 10/9 k = √(10/9) = √10/3 Периметры подобных многоугольников относятся как коэффициент подобия k = P₂/P₁ = √10/3 P₂ = P₁*√10/3 И по условию разность периметров равна 10 см P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10 P₁(√10/3 - 1) = 10 P₁ = 10/(√10/3 - 1) Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1) P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см
P₂ - P₁ = 10 P₂ = P₁ + 10 = 30√10 + 100 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Построй треугольник со сторонами 3, 4, и 5 см. В нем нужно найти синус, косинус, тангенс, и котангенс угла А и угла В в построенном треугольнике
k² = S₂/S₁ = 10/9
k = √(10/9) = √10/3
Периметры подобных многоугольников относятся как коэффициент подобия
k = P₂/P₁ = √10/3
P₂ = P₁*√10/3
И по условию разность периметров равна 10 см
P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10
P₁(√10/3 - 1) = 10
P₁ = 10/(√10/3 - 1)
Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1)
P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см
P₂ - P₁ = 10
P₂ = P₁ + 10 = 30√10 + 100 см