Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
2
Тр-к равнобедренный
Р=3,2 м
Боковая сторона = b м
Основание а=( b-1) м
Найти : а ; b
Р=2b+a
3,2=2b+(b-1)
3,2=2b+b-1
3,2=3b-1
3b=3,2+1
3b=4,2
b=1,4 м - боковая сторона
а=1,4-1=0,4 м - основание
ответ : 1,4 м ; 1,4 м ; 0,4 м
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В кубе ABCDA1B1C1D1 точка K лежит на B1D1 так, что B1D1:K1D1=2:1. Найдите величину угла между прямыми AK и Очень надо
Объяснение:
а)
Тр-к АВО=тр-ку СВО - прямоугольные
АО=СО - по условию
<ВАО=<ВСО - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
2
Тр-к равнобедренный
Р=3,2 м
Боковая сторона = b м
Основание а=( b-1) м
Найти : а ; b
Р=2b+a
3,2=2b+(b-1)
3,2=2b+b-1
3,2=3b-1
3b=3,2+1
3b=4,2
b=1,4 м - боковая сторона
а=1,4-1=0,4 м - основание
ответ : 1,4 м ; 1,4 м ; 0,4 м