Пусть треугольник АВС, АВ=ВС, АА1 и ВВ1- биссектрисы, О- точка пересечения биссектрис, ОН- перпендикуляр к боковой стороне ВС. 1) В треугольнике АВВ1 биссектриса АО делит сторону ВВ1 на отрезки в отношении 5:3, по свойству биссектрисы АВ:АВ1=5:3 2) Пусть х- коэф. пропорциональности, тогда АВ=5х, АВ1=3х и по теореме Пифагора ВВ1= 4х 3) Так как ВО:ОВ1=5:3, следовательно ВО=(4х:8)·5=2,5х 4) СН-ВН=4, СН+ВН=5х⇒2ВН=5х-4⇒ВН=2,5х-2 5) Треугольники СВВ1 и ОВН подобны (по трем равным углам) из подобия составим пропорцию: 5х/2,5х=4х/2,5х-2⇒х=4 6) Периметр 5х+5х+6х=16х=64
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
математический диктант и самостоятельная работа от самостоятельная только 2 вариант
1) В треугольнике АВВ1 биссектриса АО делит сторону ВВ1 на отрезки в отношении 5:3, по свойству биссектрисы АВ:АВ1=5:3
2) Пусть х- коэф. пропорциональности, тогда АВ=5х, АВ1=3х и по теореме Пифагора ВВ1= 4х
3) Так как ВО:ОВ1=5:3, следовательно ВО=(4х:8)·5=2,5х
4) СН-ВН=4, СН+ВН=5х⇒2ВН=5х-4⇒ВН=2,5х-2
5) Треугольники СВВ1 и ОВН подобны (по трем равным углам) из подобия составим пропорцию:
5х/2,5х=4х/2,5х-2⇒х=4
6) Периметр 5х+5х+6х=16х=64