Поделитесь своими знаниями, ответьте на вопрос:
В квадрате со стороной единица поместили несколько отрезков, параллельных сторонам квадрата (квадрату принадлежит граница, а отрезкам принадлежат концы Отрезки могут пересекать друг друга. Сумма их длин равна 18. Докажите, что среди частей, на которые квадрат разбит объединением отрезков, найдётся такая, площадь которой не меньше 0:01. Указание. Оцените двумя сумму периметров частей. Чем меньше площадь, тем относительно больший периметр на неё приходится.
Если 3 точки лежат на одной прямой, то тангенсы угла наклона соединяющих их прямых равны.
1) Пусть AM = a, AN = b. Тогда по условию NC = 5b, а MD = 4a, BC = 5a. Пусть угол NAM = α. Т.к AC - диагональ, то и угол BCA = углу NAM = α, ведь диагональ пересекает два параллельных основания. Треугольники AMN и BCN подобны по углу и прилегающим к нему сторонам.
2) Пусть угол BNC = β, тогда из подобия ANM тоже = β. Проведем прямую NO, которая параллельна BC и AD. Угол СNO будет равен α, т.к это угол при двух параллельных прямых и секущей. А угол BNO будет равен α + β. Угол DMN является внешним для треугольника ANM, он равен сумме внутренних не смежных с ним углов. DMN = α + β. Т.к. NO ║ AD и тангенсы угла наклона прямых BN, NM и BM равны, то точки B, M, N лежат на одной прямой, чтд