Поделитесь своими знаниями, ответьте на вопрос:
Треугольник ACD - равнобедренный с основанием АD. Точки М и К середины сторон АС и CD соответственно, точка О лежит на стороне АD, причем угол АМО = углу DKO. Найдите угол СОD и OCD, если угол АСD=44.
Треугольник ABC, стороны (противолежащие углам) a, b, c,
Точка K делит сторону BC = a на отрезки CK = x и BK = a - x;
Точка M делит сторону AC = b на отрезки AM = y и CM = b - y;
Точка N делит сторону AB = c на отрезки BC = z и AC = c - z;
Получается из условия деления периметра пополам
b + x = c + a - x; x = (c + a - b)/2 = p - b; CK = p - b;
где p - полупериметр ABC; p = (a + b + c)/2;
a - x = BK = p - c;
Аналогично
AM = p - c; CM = p - a;
BN = p - a; AN = p - b;
То есть AN*BK*CM/(BN*AM*CK) = (p - b)*(p - c)*(p - a)/((p - a)*(p - c)*(p - b)) = 1;
Остается сослаться на обратную теорему Чевы.