dream2366
?>

АВС - равнобедренный, АВ - AC, AD - медиана. Периметр равен 60 см, а периметр - 40 см. Какова длина медианы AD?Нужно записать решение и ответ ​

Геометрия

Ответы

missimeri

a)    tg∠MHC = 2

б) ∠(AM; (MBC)) = arccos(√10/4)

Объяснение:

a) Пусть Н - середина АВ, тогда СН - медиана и высота равнобедренного треугольника АВС,

СН ⊥ АВ.

СН - проекция МН на плоскость (АВС), значит

МН ⊥ АВ по теореме о трех перпендикулярах.

Тогда ∠МНС - линейный угол двугранного угла МАВС.

Из прямоугольного треугольника АСН:

СН = АС/2 = 2 см, как катет, лежащий против угла в 30°.

ΔМНС:   ∠МСН = 90°,

              tg∠MHC = MC / CH = 4 / 2 = 2

б) ∠ВАС = ∠ВСА = 30° как углы при основании равнобедренного треугольника АВС, ⇒

∠АСВ = 180° - 30° · 2 = 120°

Проведем АК⊥ВС, тогда ∠ АСК = 180° - 120° = 60° (по свойству смежных углов).

ΔАСК:   ∠АКС = 90°

∠САК = 90° - 60° = 30°.

КС = 1/2 АС = 2 см как катет, лежащий против угла в 30°.

ΔСКМ: ∠МСК = 90°, по теореме Пифагора

           МК = √(МС² + СК²) = √(16 + 4) = √20 = 2√5 см

СМ⊥(АВС) по условию, значит

СМ⊥АК,

АК⊥ВС по построению, ⇒ АК ⊥ (МВС), тогда

МК - проекция прямой АМ на плоскость (МВС) и значит

∠АМК = ∠(АМ; (МВС)) - искомый.

ΔАМС прямоугольный равнобедренный, значит его гипотенуза

АМ = СМ√2 = 4√2 см

ΔАМК:   ∠АКМ = 90°

             cos∠AMK = MK / AM = 2√5 / (4√2) = √10/4

∠AMK = arccos(√10/4)


Вравнобедренном треугольнике abc ac=cb=4, bac=30, отрезок см-перпендикуляр к плоскости abc, cm=4см.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

АВС - равнобедренный, АВ - AC, AD - медиана. Периметр равен 60 см, а периметр - 40 см. Какова длина медианы AD?Нужно записать решение и ответ ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ekkim310
alekseysokolov29816
antonkovalev89
grekova5
Tselyaritskaya Yurevich
rayman777
Бочкарева Горохова1652
kot271104
Леонтьева
barg562
sanyaborisov910067
Евгения-Валерий
Роман_Гречина
retropluse832
dvbbdv4