228. а) В ∆АВС /_A = 30°, /_B = 60°. Найдите отношение (а:b: c) сторон треугольника.б) Найдите отношение сторон треугольника, выраженное трех-значными числами, если его углы относятся как 3:4:8.
Коэффициент подобия называется отношение любых соответственных линейных размеров первой фигуры к линейным размерам второй фигуры, находящимся против одинаковых углов.
А так как площадь треугольника равна произведение сторон АВ, ВС, и синуса угла между ними, а А1В1 = к * АВ, В1С1 = к * ВС, к коэффициент подобия,то :
S A1B1C1 = A1B1 * B1C1 * sin <(A1B1,B1C1) = 81 (cм2) = к* АВ * к * ВС * sin<(AB,BC) = k^2*S ABC
S ABC = AB * BC * sin < (AB,BC)=25(cм2).
к^2 = S A1B1C1/ S ABC = 81/25, k = 9/5 = 1,8
^ - степень
/ - деление
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
228. а) В ∆АВС /_A = 30°, /_B = 60°. Найдите отношение (а:b: c) сторон треугольника.б) Найдите отношение сторон треугольника, выраженное трех-значными числами, если его углы относятся как 3:4:8.
Коэффициент подобия называется отношение любых соответственных линейных размеров первой фигуры к линейным размерам второй фигуры, находящимся против одинаковых углов.
А так как площадь треугольника равна произведение сторон АВ, ВС, и синуса угла между ними, а А1В1 = к * АВ, В1С1 = к * ВС, к коэффициент подобия,то :
S A1B1C1 = A1B1 * B1C1 * sin <(A1B1,B1C1) = 81 (cм2) = к* АВ * к * ВС * sin<(AB,BC) = k^2*S ABC
S ABC = AB * BC * sin < (AB,BC)=25(cм2).
к^2 = S A1B1C1/ S ABC = 81/25, k = 9/5 = 1,8
^ - степень
/ - деление