1. Дано: две концентрические окружности. АD-диаметр большей, СВ- диаметр меньшей окр.
Найти АВ/СD
Решение.
Треугольники АОВ и DОС равны по 1 признаку равенства треугольников. в них АО=DО как радиусы большой окружности, ОВ=ОС как радиусы малой окружности, углв АОВ и DОС равны как вертикальные, а из равенства треугольников следует равенство сторон АВ и СD, поэтому отношение равных сторон равно единице.
2. Дано. АВ- диаметр окружности. радиус =6 см
∠АВК=30°
Найти расстояние от точки А до прямой ВК
Решение.
соединим А и К, угол АКВ=90°, т.к. это вписанный угол, опирающийся на диаметр АВ, равный 2*6, а расстояние АК- искомое, это катет, лежащий против угла в 30°, он равен половине гипотенузы, т.е. 2*6*2=6/см/
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
4) а Дано: a || b, c – секущая, Z2 = 21.5Найти: 21, 22.41.Б27)Дано: AC || ВК.Найти: ZA, ZABC.A60°KD10)3Дано: CE || BA, 23 = 130°.Найти: ZACD.BА13) ВДано: 21 = t2 = 30°, АВ || DЕ.Найти: _АЕВ.25°АD
1. Дано: две концентрические окружности. АD-диаметр большей, СВ- диаметр меньшей окр.
Найти АВ/СD
Решение.
Треугольники АОВ и DОС равны по 1 признаку равенства треугольников. в них АО=DО как радиусы большой окружности, ОВ=ОС как радиусы малой окружности, углв АОВ и DОС равны как вертикальные, а из равенства треугольников следует равенство сторон АВ и СD, поэтому отношение равных сторон равно единице.
2. Дано. АВ- диаметр окружности. радиус =6 см
∠АВК=30°
Найти расстояние от точки А до прямой ВК
Решение.
соединим А и К, угол АКВ=90°, т.к. это вписанный угол, опирающийся на диаметр АВ, равный 2*6, а расстояние АК- искомое, это катет, лежащий против угла в 30°, он равен половине гипотенузы, т.е. 2*6*2=6/см/