?>
Джек и его собака играли на улице. Джек бросал палку в воздух для того, чтобы собака ее поймала. Высота полета палки (в метрах) соответствовала уравнению h = 20t - 5t², где t время в секундах a) График h является параболой. Определите ее направление. Укажите, имеет ли парабола максимум или минимум b) Найдите промежуток во времени, когда палка находится над землей. Как долго палка остается в воздухе? c) Какова максимальная высота, достигаемая палкой? Объясните. d) Используйте информацию, которую вы обнаружили, чтобы начертить график полета палки
Ответы
Стороны сечения куба этой плоскостью будут лежать на гранях куба.
Данное сечение куба - трапеция КЕВ1С
с большим основанием В1С и
меньшим ЕК.
В1С= диагональ грани и равна а√2 по свойству диагонали квадрата.
ЕК=(а/2)√2 на том же основании
КС²=ДС²+КД²=а²+ 0,25а²=1,25а²
Проведем высоту КН трапеции.
Высота равнобедренной трапеции из тупого угла делит большее основание на отрезки, равные полуразности и полусумме оснований.
НС=(В1С-КЕ):2=(а√2-0,5а√2):2=0,25а√2
КН²=КС² - НС²=1,25а²-(0,25а√2)²=1,25а²-0,125а²=1,125а²
КН=√(1,125а²)=1,5а√0,5
Площадь трапеции равна произведению высоты на полусумму оснований:
S=KH*(EK+B1C):2=
=1,5а√0,5*(0,5а√2+а√2):2=
=(1,5а√0,5)*0,75а√2=
=1,5а*0,75а*√(0,5*2)=1,125а²
Для нахождения площади трапеции существует не только та формула, которую в большей части случаев мы используем.
В приложенном рисунке дана формула для произвольной трапеции и для равнобедренной трапеции через стороны.
По ней площадь получается та же, что по обычной формуле через назождение высоты.
S=1,125а²