1) Найдем длины сторон 4-хугольника по формуле расстояния между двумя точками:
MN=sqrt((5-2)^2+(3-2)^2)=sqrt(9+1)=sqrt(10);
NK=sqrt((6-5)^2+(6-3)^2)=sqrt(1+9)=sqrt(10);
KP=sqrt((3-6)^2+(5-6)^2)=sqrt(9+1)=sqrt(10);
PM=sqrt((2-3)^2+(2-5)^2)=sqrt(1+9)=sqrt(10).
Итак, в чет-ке MNPK длины сторон равны, значит это либо ромб, либо квадрат (тоже ромб!).
2) Найдем длины диагоналей 4-хугольника по формуле расстояния между двумя точками:
NP=sqrt((3-5)^2+(5-3)^2)=sqrt(4+4)=sqrt(8)=2*sqrt(2);
MK=sqrt((6-2)^2+(6-2)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2).
Итак, диагонали неравны, значит это ромб, ч.т.д.
3) Площадь ромба равна половине произведения длин его диагоналей:
S=(1/2)*2*sqrt(2)*4*sqrt(2)=4*2=8
Поделитесь своими знаниями, ответьте на вопрос:
Даны четыре вектора: а(-2;6;-3), в(4;0;3), с(-4;2;1 Найдите координаты вектора d =2a+3b-5c.
1) Найдем длины сторон 4-хугольника по формуле расстояния между двумя точками:
MN=sqrt((5-2)^2+(3-2)^2)=sqrt(9+1)=sqrt(10);
NK=sqrt((6-5)^2+(6-3)^2)=sqrt(1+9)=sqrt(10);
KP=sqrt((3-6)^2+(5-6)^2)=sqrt(9+1)=sqrt(10);
PM=sqrt((2-3)^2+(2-5)^2)=sqrt(1+9)=sqrt(10).
Итак, в чет-ке MNPK длины сторон равны, значит это либо ромб, либо квадрат (тоже ромб!).
2) Найдем длины диагоналей 4-хугольника по формуле расстояния между двумя точками:
NP=sqrt((3-5)^2+(5-3)^2)=sqrt(4+4)=sqrt(8)=2*sqrt(2);
MK=sqrt((6-2)^2+(6-2)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2).
Итак, диагонали неравны, значит это ромб, ч.т.д.
3) Площадь ромба равна половине произведения длин его диагоналей:
S=(1/2)*2*sqrt(2)*4*sqrt(2)=4*2=8