Т.к. это прямоугольная трапеция, то 2 угла(а,в) у нее =90 градусов. следовательно, сумма 2-х других углов(с,d) =180(по теореме о сумме углов прямоугольника). т.к. угол с=135, то угол d=45. роль высоты сн играет ав, т.к. она равна высоте. сн делит трапецию на квадрат и равнобедренный треугольник(угол нсd=45 и угол d=45). т.к. треугольник нсd равнобедренный, то dh=ch. аd=ah+hd. ah=bc => ad=bc+hd => ad=60/ площадь трапеции = произведению полусуммы ее оснований на высоту.=> s=((30+60)/2)*30=1350 ответ: 1350
Попов1946
12.08.2020
Aod и boc - равнобедренные прямоугольные треугольники с известными гипотенузами. отсюда легко видеть, что ao = od = 20√2; bo = oc = 15√2; треугольник cod прямоугольный с известными катетами, откуда легко найти и cd = 25√2; это просто египетский треугольник 3,4,5, коэффициент подобия 5√2. (внимание! - читать внимательно). поскольку равнобедренная трапеция может быть вписана в окружность, om является медианой треугольника aob; строится описанная окружность. ∠moa = ∠koc; ∠cok = ∠doc; (стороны углов перпендикулярны)∠bao = ∠odc; (вписанные углы, оба опираются на дугу cb)=> δmao - равнобедренный; углы при стороне ao равны,=> am = mo; на гипотенузе прямоугольного δabo есть только одна точка, равноудаленная от вершины прямого угла и вершины острого - её середина => om - медиана треугольника aob; поэтому надо найти сумму длин высоты и медианы к гипотенузе в египетском треугольнике с коэффициентом подобия 5√2; высота треугольника 3,4,5 равна 3*4/5 = 2,4; медиана 2,5; в сумме 4,9 и остается умножить на 5√2; ответ 49√2/2;
это 17 градусов,если быть ещё точнее то 16,95