Дан треугольник MKP . Плоскость, параллельная прямой MK пересекает MP в точке M1 , PK – в точке K1 . MK = 45 см, MP:M1P = 18:5 . Чему равна длина отрезка M1K1?
Площадь треугольника равна половине произведения основания на высоту опущенную на это основание.
ВК- высота
S1=АС*ВК/2=6*5/2=15см² площадь треугольника ∆АВС
ответ: площадь треугольника ∆АВС равна 15см²
2) параллелограм КРМО.
РН-высота
S2=PH*OM=5*5=25 см² площадь параллелограма.
ответ: 25см²
3) ромб АВСD
AС и ВD диагонали ромба
Площадь ромба равна половине произведения двух диагоналей
S3=АС*BD/2=4*6/2=24/2=12см² площадь ромба.
ответ: 12см²
4) ∆LMN
∆LMN- прямоугольный.
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S4=LM*MN/2=3*5/2=7,5см² площадь треугольника ∆LMN
ответ: 7,5см²
5) трапеция ABCD.
Площадь трапеции равна произведению средней линии трапеции на высоту.
ВК- высота трапеции.
S4=BK*(BC+AD)/2
S4=3*(4+8)/2=3*12/2=36/2=18см² площадь трапеции
ответ:18см²
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан треугольник MKP . Плоскость, параллельная прямой MK пересекает MP в точке M1 , PK – в точке K1 . MK = 45 см, MP:M1P = 18:5 . Чему равна длина отрезка M1K1?
Объяснение:
1кл=1см
1) треугольник ∆АВС
Площадь треугольника равна половине произведения основания на высоту опущенную на это основание.
ВК- высота
S1=АС*ВК/2=6*5/2=15см² площадь треугольника ∆АВС
ответ: площадь треугольника ∆АВС равна 15см²
2) параллелограм КРМО.
РН-высота
S2=PH*OM=5*5=25 см² площадь параллелограма.
ответ: 25см²
3) ромб АВСD
AС и ВD диагонали ромба
Площадь ромба равна половине произведения двух диагоналей
S3=АС*BD/2=4*6/2=24/2=12см² площадь ромба.
ответ: 12см²
4) ∆LMN
∆LMN- прямоугольный.
Площадь прямоугольного треугольника равна половине произведения двух катетов.
S4=LM*MN/2=3*5/2=7,5см² площадь треугольника ∆LMN
ответ: 7,5см²
5) трапеция ABCD.
Площадь трапеции равна произведению средней линии трапеции на высоту.
ВК- высота трапеции.
S4=BK*(BC+AD)/2
S4=3*(4+8)/2=3*12/2=36/2=18см² площадь трапеции
ответ:18см²