Расстояние от точки до плоскости равно длине отрезка, проведенного к ней перпендикулярно.
М удалена от каждой вершины треугольника, следовательно, проекции прямых, соединяющих её с вершинами треугольника АВС, равны радиусу описанной окружности., а М проецируется в центр О этой окружности.
∠ВАС- вписанный, ∠ВОС - центральный и равен 2•∠АОС=60° по свойству вписанных углов.
Тогда ∆ ВОС равносторонний, радиус описанной окружности равен R=ВС=8.
∆ ВОМ прямоугольный, гипотенуза МВ=17, катет ВО=8
По т.Пифагора ( её Вы уже знаете) МО=15 см.
По т.синусов
2R=ВС:sin30°= 8:0,5=16⇒
R=8
Нахождение МО описано в первом варианте.
Объяснение:
можно лучший ответ
Поскольку CE - биссектрисса угла С, то угол KCE равен 90 / 2 = 45 градусов.
Тогда в прямоугольном треугольнике CKE угол KEC найдем исходя из того, что сумма углов треугольника равна 180 градусам. Поскольку два угла из трех нам известны (К - прямой угол прямоугольника, угол KEC равен 45 градусам), то 180 - 90 - 45 = 45 градусов.
Поскольку два угла треугольника CKE равны между собой, то этот прямоугольный треугольник также является и равнобедренным. Исходя из этого CK=KE=MN.
Обозначим длину отрезка KE как x. Тогда EM будет равно х+3 . Таким образом, периметр прямоугольника будет равен
2 ( CK + KE + EM ) = 51
Учтем, что CK = KE
2 ( x + x + x + 3 ) = 51
2( 3x + 3) = 51
6x + 6 = 51
6x = 45
x = 7,5 см
Так как KE = CK = MN, то MN = 7,5 см
ответ: 7,5 см
Поделитесь своими знаниями, ответьте на вопрос:
Найдите радиус окружности описанной около треугольника abc если ab = √2 см, угол с = 45°
ответ: 1
объяснение:
по теореме синусов:
ab/sin∠c = 2r ⇔ r = √2/2sin45° = √2 · √2/2 = 1