1) 30*. 30*. 120*.
2) 40*. 80*. 60*.
3) 12 см. 24 см. 24 см.
Объяснение:
1. ∠2+∠4 = 180*
∠4=5∠2;
∠2 + 5∠2 =180*;
6∠2 = 180*;
∠2 = 180* : 6 = 30*.
∠4 = 5*30=150*.
∠1=∠2 = 30* - углы при основании равнобедренного треугольника.
∠3=180-2*30* = 180*-60*=120*.
***
2. Дано. ∠1:∠2:∠3=2:4:3;
Найти ∠1, ∠2, ∠3.
Решение.
Сумма углов треугольнике равна 180*
Пусть ∠1 = 2х.
Тогда ∠2=4х, ∠3=3х.
2х+4х+3х=180*;
9x=180*;
x=180* :9 = 20*.
Тогда
∠1=2х = 2*20 = 40*.
∠2 = 4х = 4*20=80*.
∠3= 3х = 3*20=60*.
***
3. Дано. АВС - равнобедренный треугольник. Р=60см. Одна сторона равна 12 см. Найти все стороны.
Решение.
Пусть стороны равны a, b, c.
Периметр Р=a+b+с, где a=b. c=12 см. Тогда:
2a + 12 =60;
2а=60-12;
2а=48;
а=b= 24 см.
ответ: АВ = 5; ВО = 12; ДО = 20; ДМ = 15; МО = 25; ON = 24; ОР = 18.
Объяснение: Для нахождения сторон применим теорему Пифагора, которая гласит: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
На рисунке все треугольники кроме треугольника АВО являются прямоугольными. В треугольнике АВО не указан угол 90 градусов. Но, можно предполагать, что линия ДВА является прямой. Если это так, то и треугольник АВО будет прямоугольным. Будем исходить из того, что линия ДВА - прямая. И так.
АВ = √(СВ² +АС²) = √(4² + 3²) = √25 = 5
ВО = √(АО² - АВ²) = √(13²- 5²) = √144 = 12
ДО = √(ДВ²+ВО²) = √(16² +12²) =√400 = 20
ДМ = √(ДК²+КМ²) = √(12²+9²) = √225 = 15
МО = √(ДО² + ДМ²) = √(20² + 15²) = √625 = 25
ON = √(ОМ² - MN²) = √(25² - 7²) = √576 = 24
ОР = √(PN² - NO²) = √(30² - 24²) = √324 = 18
Поделитесь своими знаниями, ответьте на вопрос:
1) боковое ребро,
as=
2) угол между боковым ребром и основанием
tga= h : (a sqrt2) / 2= 2н/а * sqrt 2=h*sqrt2 / a
3) двугранный угол при основании
sm- апофема уг smo - линейный угол двугранного адсs(dc)
tgsmo= h : 1/2а=2н/а