подставим координаты точек а и в в уравнение эллипса с учётом того, что он симметричный относительно осей координат.
(200/9а²) + (4/9в²) = 1,
(50/4а²) + (1/в²) = 1.
приводим к общему знаменателю.
200в² + 4а² = 9а²в².
50в² + 4а² = 4а²в².
умножим обе части первого уравнения на 4, а второго на 9.
800в² + 16а² = 36а²в².
450в² +36а² = 36а²в².
вычтем из первого второе.
350в² + 20а² = 0.
отсюда получаем а² = (35/2)в² и подставим во второе уравнение.5
50в² + 70в² = 70в⁴.
получаем биквадратное уравнение 70в⁴ - 120в² = 0.
сократим на 10 и сделаем замену в² = t.
7t² - 12t = 0,
t(7t - 12) = 0. t1 = 0, t2 = 12/7.
отсюда находим значение полуосей:
в1 = 0 (не принимаем) и в2 = +-√(12/7) =+-2√(3/7).
а = +-√((35/7)*(12/7)) = +-√30.
ответ: |а| = √30, |b| = 2√(3/7).
пошаговое объяснение: нам известен отрезок на который опирается известный угол. поэтому легко построить окружность описанную около искомого треугольника (для этого можно , например, на луче заданного угла взять точку из которой засечь на другом луче точку удаленную от первой на расстояние равное данному отрезку, а потом около треугольника описать окружность. последнее построение -стандартное). биссектриса делит дугу на которую опирается отрезок пополам. середина дуги находится как точка пересечения перпендикуляра из середины отрезка с окружностью. пусть середина дуги точка е. строим точку д делящую отрезок на два заданных. проводим ед до пересечения с окружностью. точка пересечения - третья вершина искомого треугольника.
Поделитесь своими знаниями, ответьте на вопрос:
ответ: 500 сантиметров от екрана