Медиана АN делит треугольник АВС на два равновеликих треугольника, то есть площадь треугольника АВN равна половине площади АВС. Действительно Основания треугольников АВN и АСN равны (ВN = СN), высота общая.
Опустим перпендикуляр АР на сторону ВС и перпендикуляр МR на сторону ВС.
Треугольники АРN и МRN подобны. АN:MN = AP:NR.
Точка персечения медиан М делит медианы на отрезки с сотношением длинн 2:1, считая от вершины,
то есть АМ: MN. Отсюда АN:MN = 3:1, значит AP:NR = 3:1. AP и NR - высоты треугольников АВN и МВN с общим основанием ВN,
поэтому площадь МВN = (1/3)*(площадь АВN) = (1/3)*(1/2)*(площадь АВС) = (1/6)*(площадь АВС).
Отсюда площадь АВС = 6*(площадь МВN) = 6*15 = 90.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике авс угол а равна альфа, угол в равно бета, вс равна а.найдите длину стороны ас и радиус окружности, описанной около треугольника.
вс / sin a = ac /sinb, ac = a x sinb/sina, r = a/(2 x sina)