в прямоугольном треугольнике катет, лежащий напротив угла в 30 градусов равен половине гипотенузы.
дан треугольник авс, в котором ∠с = 90°, ∠а = 30°, надо доказать, что
вс = 1/2ав.
∠в = 90° - ∠а = 90° - 30° = 60° (сумма острых углов прямоугольного треугольника равна 90°).
построим треугольник асd, равный треугольнику асв с общим катетом ас. тогда ∠bad = ∠bac + ∠dac = 2 · 30° = 60°,
∠adc = ∠abc = 60°, ⇒ δbad равносторонний, bd = ab.
ас - высота равностороннего треугольника bad, значит и медиана, тогда
bc = cd = 1/2bd = 1/2ab.
Поделитесь своими знаниями, ответьте на вопрос:
Постоить описанную окружность около треугольника
окружность называется описанной около треугольника, если она проходит через все его вершины.