П`ятикутник - це багатокутник, у якого п`ять кутів. П`ятикутники бувають правильними, неправильними, опуклими, увігнутими, зірчастими. Не існу диного обчислення площі п`ятикутників, але легко знайти площу правильного п`ятикутника. Ця стаття описує два основних обчислення площі правильного п`ятикутника.
Кроки
Частина 1 з 3: Основи
1
Правильні і неправильні п`ятикутники. Правильний п`ятикутник - це п`ятикутник, у якого всі сторони рівними в іншому випадку п`ятикутник називається неправильним.
Правильний п`ятикутник завжди буде опуклим (див. Нижче). Неправильний п`ятикутник може бути і опуклим, і увігнутим.
2
Опуклі і увігнуті п`ятикутники. Опуклий п`ятикутник не має вершин, спрямованих всередину фігури (іншими словами, не має внутрішніх кутів більше 180 градусів). Увігнутий п`ятикутник має вершину, спрямовану всередину фігури (іншими словами, має внутрішній кут більше 180 градусів).
3
Периметр п`ятикутника. Як і у випадку інших геометричних фігур, знайти периметр п`ятикутника легко складіть довжини всіх п`яти сторін.
4
Апофема правильного п`ятикутника. Апофема - відрізок, що з`єднує центр п`ятикутника і середину будь-який з його сторін.
5
Основні тригонометричні функції. Їх треба знати, оскільки площа п`ятикутника можна знайти за до його розбиття на прямокутні трикутники. Існують три основні тригонометричних функції: sin кута = протилежний катет / гіпотенуза- cos кута = прилежащий катет / гіпотенуза- tg кута = протилежний катет / прилежащий катет.
Частина 2 з 3: Обчислення площі п`ятикутника: геометрія
1
Розбийте п`ятикутник на п`ять рівнобедрених трикутників. Потім у кожному трикутнику опустіть висоту (з центру п`ятикутника). Ви отримаєте десять прямокутних трикутників. Запам`ятайте: кожен кут п`ятикутника дорівнює 108 градусам.
Наприклад, знайдіть площа правильного п`ятикутника зі стороною 6 см. Для початку розбийте його так, як показано на малюнку.
2
Знайдіть сторони рівнобедреного трикутника. Для цього розгляньте один з прямокутних трикутників.
У наведеному прикладі сторона п`ятикутника дорівнює 6 см. Отже, один катет прямокутного трикутника дорівнює 3 см (оскільки висота ділить сторону п`ятикутника навпіл). За до тригонометричних функцій можна обчислити інші сторони. Обчислення показані на малюнку.
3
Обчисліть площу прямокутного трикутника. Площа прямокутного трикутника обчислюється за формулою: А1 = ab / 2.
У наведеному вище прикладі підставте знайдені значення в цю формулу. Обчислення показані на малюнку.
4
Знайдіть площу п`ятикутника. Нагадаємо, що ви розбили п`ятикутник на десять прямокутних трикутників. Таким чином, загальна площа п`ятикутника в десять разів більше площі одного прямокутного трикутника: А = 10 * А1.
У наведеному вище прикладі площа п`ятикутника обчислюється таким чином: А = 10 * А1 = 10 * 3,0321 = 30,3210.
Частина 3 з 3: Обчислення площі п`ятикутника: формула
1
Формула для обчислення площі будь-якого правильного багатокутника: A = Pa / 2, де Р - периметр багатокутника, а - апофема багатокутника.
Наприклад, дано правильний п`ятикутник зі стороною 6 см. Знайдіть його площу.
2
Знайдіть периметр п`ятикутника. Для цього складіть довжини всіх його сторін.
У наведеному вище прикладі: Р = 6 + 6 + 6 + 6 + 6 = 30.
3
Знайдіть апофему п`ятикутника. Якщо ви знаєте сторону багатокутника, то його апофема обчислюється за формулою: а = s / 2tan (180 / n), де s - сторона багатокутника, n - кількість сторін багатокутника.
У наведеному вище прикладі обчислення апофеми показано на малюнку.
4
Обчисліть площу п`ятикутника. Для цього використовуйте основну формулу для обчислення площі п`ятикутника.
У наведеному вище прикладі: А = (30 * 2,0214) / 2 = 30,3210.
Поради
Якщо можливо, обчисліть площа п`ятикутника, використовуючи обидва описаних методу. Потім порівняйте результати, щоб підтвердити правильність відповіді.
Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника 3 см, 6 см и 7 см. найдите длину биссектрисы большего угла треугольника.
Треугольник АВС равносторонний, так как АВ = АС как отрезки касательных к окружности проведённых из одной точки. ∠ВАС = 60, значит ∠АВС = ∠АСВ = (180 - 60) : 2 = 60 Рассмотрим четырёхугольник АСОВ. Сумма углов четырёхугольника равна 360 . ∠АСО = ∠АВО = 90 как углы образованные радиусом окружности и касательной к окружности, Значит ∠ ВОС = 360 - 90 - 90 - 60 = 120. По теореме косинусов найдем ВС² = ВО² + ОС² - 2 * ВО * ВО* cos 120
ВС² = 400 + 400 + 2 * 400 * 0,5 = 800 + 400 = 1200
ВС = 20√3
Р = 20√3 * 3 =60√3мм²
(бро , если не сложно мне с решением моего)