куб. ед.
Объяснение:
Пирамида правильная, значит основание - квадрат, а высота проецируется в точку пересечения диагоналей квадрата.
Н - середина CD, тогда SH - апофема пирамиды.
SH = 4√2
SH⊥CD, OH - проекция SH на плоскость основания, значит ОН⊥CD по теореме, обратной теореме о трех перпендикулярах.
∠SHO = 45° - линейный угол двугранного угла при ребре основания.
Рассмотрим ΔSOH:
∠SOH = 90°, ∠SHO = 45°, ⇒ ∠HSO = 45°, треугольник равнобедренный.
SO = OH = x
По теореме Пифагора:
SH² = SO² + OH²
(4√2)² = x² + x²
2x² = 32
x² = 16
x = 4 (x = - 4 не подходит по смыслу задачи)
SO = 4 - высота пирамиды
AD = 2OH = 2 · 4 = 8, так как ОН - средняя линия треугольника ACD.
Sabcd = AD² = 8² = 64
Объем пирамиды:


ответ:Скорее тут доказать надо, что они равны между собой.
Объяснение:
Для начала постараемся найти углы треугольника ABC
1) так как стороны AC = CB, треугольник равнобедренный.
2) Угол DCB = 90:2 = 45 , так как высота, проведенная к основанию в равнобедренном треугольнике явл. медианой и биссектрисой.
3) так как углы при основании равны в равнобедренном треугольнике, тогда 180 - 90 = 90, сумма углов A и B.
угол A = углу B = 90:2 = 45 градусам.
Докажем, что треугольник ADC = треугольнику BDC.
1) Угол A = углу B, так как треугольник ABC - равнобедренный.
2) Угол ADC = углу CDB, так как CD - высота.
3) AD = DB - так как CD - высота, медиана и биссектриса равнобедренного треугольника
Следовательно, треугольник ADC = BDC равны по двум углам и стороне
Поделитесь своими знаниями, ответьте на вопрос:
по теореме пифагора
ответ: 16