высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. вычисли двугранный угол при основании.
основание правильной четырехугольной пирамиды – квадрат.
все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
радиус вписанной в квадрат окружности равен половине его стороны.
r=24: 2=12 (см)
соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
при этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
следовательно, треугольник - равнобедренный. острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ искомый угол равен45º.
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите площадь треугольника, длина одной стороны которого равна 4 см, а градусные меры прилежащих к ней углов равны 30° и 45°. напешите и на чертите на листике решение
Указать, какие из перечисленных утверждений верны.
1.
2) Медиана проходит через середину стороны треугольника.
3) Медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
5) Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2 к 1, считая от вершины.
2.
1) Высота всегда образует с прямой, содержащей одну из сторон треугольника, равные углы.
2) В прямоугольном треугольнике высота может совпадать с одной из его сторон.
5) Высота может лежать и вне треугольника.
3.
2) Биссектриса всегда делит пополам один из углов треугольника.
3) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
4) Точка пересечения биссектрис произвольного треугольника - центр окружности, вписанной в этот треугольник.
4.
1) Биссектриса всегда делит пополам один из углов треугольника.
3) Точка пересечения биссектрис всегда лежит внутри треугольника.
4) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам.