, связанные с определением количества информации, занимают довольно большое место как в общем курсе 9-11 классов, так и при итоговой аттестации разного типа.
обычно решение подобных не представляет трудности для учащихся с хорошими способностями к анализу ситуаций. но большинство
учеников поначалу путаются в понятиях и не знают, как приступить к решению.
тем не менее, к 9-му классу учащиеся уже имеют определенный опыт решения по другим предметам (более всего – ) с применением формул. определить, что в дано, что необходимо найти, и выразить одну переменную
через другую – действия довольно привычные, и с ними справляются даже слабые ученики. представляется возможным ввести некоторые дополнительные формулы в курсе информатики и найти общий стиль их применения в решении .
оттолкнемся от одной из главных формул информатики – формулы хартли
n=2i. при ее использовании учащиеся могут еще не знать понятия логарифма, достаточно вначале иметь перед глазами, а затем запомнить таблицу степеней числа 2 хотя бы по 10-й степени.
при этом формула может применяться в решении разного типа, если правильно определить систему
обозначений.
выделим в системе на количество информации следующих типов:
количество информации при вероятностном подходе;
кодирование положений;
количество информации при алфавитном подходе (кодирование текста);
кодирование графической
информации;
кодирование звуковой информации
все группы a (в случае, если мы имеем дело с равновероятными событиями) решаются непосредственно по формуле хартли с ее привычными обозначениями:
n – количество равновероятных событий;
i – количество бит в сообщении
о том, что событие произошло,
причем в может быть определена любая из переменных с найти вторую. в случае если число n не является непосредственно числом, представляющим ту или иную степень числа 2, количество бит нам необходимо определить «с запасом». так для гарантированного угадывания
числа в диапазоне от 1 до 100 необходимо задать минимально 7 вопросов (27=128).
решение для случаев неравновероятных событий в этой статье не рассматривается.
для решения групп b-e дополнительно введем еще одну формулу:
q=k*i
и определим систему
обозначений для разного типа.
для группы b значение переменных в формуле хартли таково:
i – количество «двоичных элементов», используемых для кодирования;
n – количество положений, которые можно закодировать посредством этих элементов.
так:
два флажка позволяют передать 4 различных сообщения;
с трех лампочек можно потенциально закодировать 8 различных сигналов;
последовательность из 8 импульсов и пауз при передаче информации посредством электрического тока позволяет закодировать 256 различных текстовых знаков;
и т.п.
рассмотрим структуру решения по формуле:
1: сколько существует различных последовательностей из символов «плюс» и «минус» длиной ровно в пять символов?
дано: i = 5
найти: n
решение: n = 25
ответ: 5
каждый элемент в последовательности для кодирования несет один бит информации.
очевидно, что при определении количества элементов, необходимых для кодирования n положений, нас всегда интересует минимально необходимое для этого количество бит.
при однократном кодировании необходимого количества положений мы определяем необходимое количество бит и ограничиваемся формулой хартли. если кодирование проводится несколько раз, то это количество мы обозначаем как k и, определяя общее количество информации для всего кода (q), применяем
вторую формулу.
2: метеорологическая станция ведет наблюдение за влажностью воздуха, результатом которых является целое число от 1 до 100%, которое кодируется посредством минимально возможного количества бит. станция сделала 80 измерений. какой информационный объем результатов
наблюдений.
дано: n = 100; k = 80
найти: q
решение:
по формуле хартли i = 7 (с запасом); q = 80 * 7 = 560
ответ: 560 бит
(если в даны варианты ответов с использованием других единиц измерения количества
информации, осуществляем перевод: 560 бит = 70 байт).
отметим дополнительно, что, если для кодирования используются нe «двоичные», а скажем, «троичные» элементы, то мы меняем в формуле основание степени.
var
k5, k9, k45, k, i, x: integer;
begin
k5 : = 0; k9 : = 0; k45 : = 0;
readln(n);
while true do
begin
readln(x);
if x = 0 then
break;
if (x mod 5 = 0) and (x mod 9 < > 0) then
k5 += 1;
if (x mod 5 < > 0) and (x mod 9 = 0) then
k9 += 1;
if x mod 45 = 0 then
k45 += 1;
end;
k : = k5+k9-k45;
write(k)
end.
Поделитесь своими знаниями, ответьте на вопрос:
Для шифровки каждой буквы используется двузначное число. известно что буква "к" кодируется числом 15. среди слов "торт", "ёжик", "станок", "беседа" есть слова, кодируемые последовательностями цифр 35291815, 303113241115. какая последовательность цифр является кодом слова "китёнок"?