Алгоритм ищет НЕЧЕТНОЕ число КРАТНОЕ 13.
Чтобы остановить цикл, ввели переменную flag.
Когда условие выполнилось flag должно задаться значение 1.
Объяснение:
Алгоритм ищет НЕЧЕТНОЕ число КРАТНОЕ 13
Когда условие выполняется (находят нечетное число кратное 13), то цикл останавливают.
Чтобы остановить цикл, ввели переменную flag которая обозначает выполнение условия.
Когда условие выполнилось, то flag должно задаться значение вызывающие остановку цикла (в данной программе это число 1 которое присваивается flag).
Векторне зображеня — це зображення, що складається з простих геометричних об'єктів (ліній, кіл, кривих, багатокутників), які можна описати математичними рівняннями:
точку задають парою координат (x, y);
пряму лінію можна задати одним з 8 загальновживаних рівнянь прямої, наприклад, лінійним рівнянням загального вигляду:
Ax + By + C = 0;
коло задають координатами центру (x0, y0) та його радіусом r. Рівняння кола має такий вигляд:
(x – x0)2 + (y – y0)2 = r 2;
прямокутник задають координатами протилежних вершин (x1, y1) і (x2, y2);
криву 2-го порядку (параболу, гіперболу, еліпс, пару прямих) задають рівнянням 2-го степеня:
a11x2 + 2a12xy + a22y2 + 2b1x + 2b2y + c = 0.
Степінь рівняння не змінюється при лінійних замінах координат. У тому числі при переході від однієї прямокутної системи координат до іншої. Для опису кривої 2-го порядку, як бачимо, достатньо п'яти параметрів — відношень коефіцієнтів до одного з них, відмінного від нуля. Якщо потрібно задати відрізок кривої, знадобляться ще два параметри.
криву 3-го порядку задають рівнянням з 10-ма параметрами-коефіцієнтами, але фактично достатньо 9-ти відношень коефіцієнтів до одного з них, відмінного від нуля. На відміну від кривої 2-го порядку, крива 3-го порядку може мати точки перегину. Саме ця особливість дозволяє зробити криві третього порядку основою відображення природних об'єктів у векторній графіці.
Крива Без'є (Bezier) 3-го порядку — особливий, спрощений вид кривих 3-го порядку.
Побудова кривої Без'є за опорними точками P0, P1, P2, P3
У наступних рівняннях дії з точками потрібно розуміти як дії з їхніми координатами:
A(xA; yA) + B(xB; yB) = C(xA + xB; yA + yB);
r · D(x; y) = F(r · x; r · y),
тобто як дії з векторами, спрямованими з початку координат у ці точки. Нехай дійсне число t, що виконує роль часу, зростає від 0 до 1. Позначимо:
A =(1 – t) · P0 + t · P1 — точка, що рухається від P0 до P1;
B =(1 – t) · P1 + t · P2 — точка, що рухається від P1 до P2;
C =(1 – t) · P2 + t · P3 — точка, що рухається від P2 до P3;
D =(1 – t) · A + t · B — точка, що рухається від A до B;
F =(1 – t) · B + t · C — точка, що рухається від B до C;
P =(1 – t) · D + t · F — точка кривої Без'є, що рухається від D до F і від P0 до P3.
У перших трьох випадках рух є прямолінійним і рівномірним за часом t — див. малюнок нижче, запозичений зі сторінки Вікіпедії.

На малюнку зафарбовано: відрізки AB, BC — зеленим, відрізок DF — синім, криву Без'є (траекторію точки P) — червоним.
Зробивши всі потрібні підстановки в останнє рівняння, отримаємо:
Р = (1 – t)3 · P0 + 3t(1 – t)2 · P1 + 3t2(1 – t) · P2 + t3 · P3.
Лінія починається при t = 0 у точці P0 з напрямом руху у точку P1. Пряма, дотична до кривої у точці P0, проходить через P1.
Лінія лінія завершується при t = 1 у точці P3 з напрямом руху від точки P2. Пряма
Поделитесь своими знаниями, ответьте на вопрос:
Cоздать программу поиска минимального значения в массиве из 7 целых чисел/