В объяснении
Объяснение:
1 Вариант
1. 1)ppt
2. 1) my.doc, bell.txt, song.docx;
3. 3)мышь
4. 1) красного, синего, зеленого
5.Объем сообщения определяется по формуле:
V=l*r,
где l-длина сообщения, r-разрешение.
l=50, т.к.всего в предложении 50 символов (пробелы и знаки препинания являются символами).
r=1 байт=8 бит.
Объем сообщения равен:
V=50*8=400 бит.
6. не понятно, что делать, задания не видно как-то
7.InternetExplorer= 73 110 116 101 114 110 101 116 69 120 112 108 111 114 101 114
8. Нет рисунка собственно
9. 64 бита < 16 байт
10 Кбайт < 10600 байт
10 байт = 80 бит
10. Нет схемы
Поделитесь своими знаниями, ответьте на вопрос:
Кр по информатике осталось 5 мин
Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:
{\displaystyle {n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}}{n+k-1 \choose k}=(-1)^{k}{-n \choose k}={\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}, [возможных состояний (кодов)], где:
{\displaystyle n}n — количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),
{\displaystyle k}k — количество элементов в наборе (количество разрядов).
В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :
{\displaystyle {\frac {\left(n+k-1\right)!}{k!\left(n-1\right)!}}={\frac {\left(2+k-1\right)!}{k!\left(2-1\right)!}}={\frac {\left(k+1\right)!}{k!1!}}=k+1}\frac{\left(n+k-1\right)!}{k!\left(n-1\right)!}=\frac{\left(2+k-1\right)!}{k!\left(2-1\right)!}=\frac{\left(k+1\right)!}{k!1!}=k+1, [возможных состояний (кодов)], то есть
описывается линейной функцией:
{\displaystyle N_{kp}(k)=k+1}N_{{kp}}(k)=k+1, [возможных состояний (кодов)], где
{\displaystyle k}k — количество двоичных разрядов.
Например, в одном 8-битном байте (k=8) количество возможных состояний (кодов) равно:
{\displaystyle N_{kp}(k)=k+1=8+1=9}N_{{kp}}(k)=k+1=8+1=9, [возможных состояний (кодов)].
В случае позиционного кода, число комбинаций (кодов) k-разрядного двоичного кода равно числу размещений с повторениями:
{\displaystyle N_{p}(k)={\bar {A}}(2,k)={\bar {A}}_{2}^{k}=2^{k}}N_{{p}}(k)={\bar {A}}(2,k)={\bar {A}}_{2}^{k}=2^{k}, где
{\displaystyle \ k}\ k — число разрядов двоичного кода.
Объяснение: