x1 x2 x3 x4 x2∧x4 ¬x1 ¬x1∨x3 x2∧x4∧(¬x1∨x3) ¬x2∧x4∧(¬x1∨x3) ¬x1∧x2 ¬x3 ¬x1∧x2∧¬x3 x4∨¬x1∧x2∧¬x3 ¬x2∧x4∧(¬x1∨x3)∧(x4∨¬x1∧x2∧¬x3) x1∧x2 ¬x1∧x2 ¬x2∧x4∧(¬x1∨x3)∧(x4∨¬x1∧x2∧¬x3)∧¬x1∧x2 ¬x2∧x4∧(¬x1∨x3)∧(x4∨¬x1∧x2∧¬x3)∧¬x1∧x2≡1
0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1
0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 1 1 0 1 0 0 0 1 1 0 1 1 1
0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1
0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0
0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0
0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1
1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1
1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
1 1 0 1 1 0 0 0 1 0 1 0 1 1 1 0 0 0
1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
1 1 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 0
Объяснение:
вроде так
Поделитесь своими знаниями, ответьте на вопрос:
Какая функция у инструмента Тяни/Толкай? 1.Нарисуем окружность, поставив курсор на рабочую область 2.Рисуем дополнительно еще одну окружность 3.Тянем внутренню окружность
Конъюнкция истинна, если верны все конъюнкты. Значит, все импликации должны быть истинны.
Импликация истинна во всех случаях, кроме 1 → 0, поэтому если xk = 1, то и все x с номерами, большими k, единицы. Если записывать решение в виде строчки со значениями переменных от x1 до x5, получается 6 решений: 00000, 00001, 00011, 00111, 01111, 11111.
Аналогично, есть 6 решений для игреков: 11111, 11110, 11100, 11000, 10000, 00000.
x2 ∨ y2 = 1, значит, хотя бы одна из переменных x2, y2 истинна. Подсчитываем число комбинаций.
1) x2 истинна (решение 01111 или 11111). Подходят все 6 решений для игреков, по правилу произведения получаем 2 * 6 = 12 решений.
2) x2 ложна (4 решения). Подходят 4 решения для игреков (все, кроме 10000 и 00000). По правилу произведения 4 * 4 = 16 решений.
Всего 12 + 16 = 28 решений.