Первым элементом с таким нарушением является хром. Рассмотрим подробнее его электронное строение (рис. 6.16 а). У атома хрома на 4s-подуровне не два, как этого следовало бы ожидать, а только один электрон. Зато на 3d-подуровне пять электронов, а ведь этот подуровень заполняется после 4s-подуровня (см. рис. 6.4). Чтобы понять, почему так происходит, посмотрим, что собой представляют электронные облака 3d-подуровня этого атома.
Каждое из пяти 3d-облаков в этом случае образовано одним электроном. Как вы уже знаете из § 4 этой главы, общее электронное облако таких пяти электронов имеет шарообразную форму, или, как говорят, сферически симметрично. По характеру распределения электронной плотности по разным направлениям оно похоже на 1s-ЭО. Энергия подуровня, электроны которого образуют такое облако, оказывается меньше, чем в случае менее симметричного облака. В данном случае энергия орбиталей 3d-подуровня равна энергии 4s-орбитали. При нарушении симметрии, например, при появлении шестого электрона, энергия орбиталей 3d-подуровня вновь становится больше, чем энергия 4s-орбитали. Поэтому у атома марганца опять появляется второй электрон на 4s-АО.
Сферической симметрией обладает общее облако любого подуровня, заполненного электронами как наполовину, так и полностью. Уменьшение энергии в этих случаях носит общий характер и не зависит от того, наполовину или полностью заполнен электронами какой-либо подуровень. А раз так, то следующее нарушение мы должны искать у атома, в электронную оболочку которого последним "приходит"девятый d-электрон. И действительно, у атома меди на 3d-подуровне 10 электронов, а на 4s-подуровне только один (рис. 6.16 б).
Уменьшение энергии орбиталей полностью или наполовину заполненного подуровня является причиной целого ряда важных химических явлений, с некоторыми из которых вы еще познакомитесь.
Теория отталкивания электронных пар валентных орбиталей (ТОЭПВО)
Теория отталкивания электронных пар валентных орбиталей, или более известная как Метод Гиллеспи, была предложена в 1940г английскими химиками Сиджвиком и Пауэллом. В последствие в 1957 она получила развитие Найхолмом и канадским химиком Гиллеспи.
Основная концепция заключается в том, что конфигурация атома зависит только от числа связывающих и несвязывающих электронных пар на валентном уровне центрального атома и взаимного отталкивания заполняющих валентные орбитали электронов.
Этот метод предсказать координационный полиэдр и геометрию молекул. Однако далеко не идеален. Так, он плохо работает для переходных элементов, гипервалентных, некоторых ионных соединений и для молекул с инертными электронными s-парами. Также, в отличие от метода молекулярных орбиталей (ММО), метод Гиллеспи не объясняет магнитные свойства соединений.
Поделитесь своими знаниями, ответьте на вопрос:
1. В какую сторону сместится химическое равновесие при повышении давления: а) 2 NO(г) N2О4 (г) б) СO(г) + Cl2 (г) COCl2 (г) в) Н2 (г) + Cl2 (г) 2 НCl (г) г) 3 Fe + 4 H2О (г) Fe3О4 + 4 H2
ответ в
Объяснение:
Можешь спросить у своей химички это правильный ответ