Короче не знаю, что именно тебе нужно , но вот :
Особенности органических соединений
В отличие от неорганических веществ органические вещества имеют ряд характерных особенностей:
1) атомы углерода соединяться друг с другом;
2) образуют цепи и кольца, что не так типично для неорганических соединений. Это одна из причин многообразия органических соединений;
3) одной из важных особенностей органических соединений, которая накладывает отпечаток на все их химические свойства, является характер связей между атомами в их молекулах.
4) важной особенностью органических соединений является и то, что среди них широко распространено явление изомерии;
5) имеется множество соединений углерода, которые обладают одинаковым качественным и количественным составом и одинаковой молекулярной массой, но совершенно различными физическими и даже химическими свойствами;
6) многие органические соединения являются непосредственными носителями, участниками или продуктами процессов, которые протекают в живых организмах, – ферменты, гормоны, витамины.
Особенности атома углерода объясняются его строением:
1) он имеет четыре валентных электрона;
2) атомы углерода образуют с другими атомами, а также друг с другом общие электронные пары. При этом на внешнем уровне каждого атома углерода будет восемь электронов (октет), четыре из которых одновременно принадлежат другим атомам.
В органической химии обычно пользуются структурными формулами, поскольку атомы имеют пространственное расположение в молекуле.
Структурные формулы – это язык органической химии.
В структурных формулах ковалентная связь обозначается черточкой. Как и в структурных формулах неорганических веществ, каждая черточка означает общую электронную пару, связывающую атомы в молекуле. Используются также эмпирические и электронные формулы.
Классификация органических соединений
В зависимости от строения углеродных цепей среди органических соединений выделяются следующие три ряда:
1) соединения с открытой цепью атомов углерода, которые также называются ациклическими, или соединения жирного ряда (это название возникло исторически: к первым соединениям с длинными незамкнутыми углеродными цепями принадлежали кислоты).
В зависимости от характера связей между атомами углерода эти соединения подразделяются на: а) предельные (или насыщенные), которые содержат в молекулах только простые (ординарные) связи; б) непредельные (или ненасыщенные), в молекулах которых имеются кратные (двойные или тройные) связи между атомами углерода;
2) соединения с замкнутой цепью атомов углерода, или карбоциклические. Эти соединения, в свою очередь, подразделяются:
а) на соединения ароматического ряда.
Они характеризуются наличием в молекулах особой циклической группировки из шести атомов углерода – бензольного ароматического ряда.
Эта группировка отличается характером связей между атомами углерода и придает содержащим ее соединениям особые химические свойства, которые называются ароматическими свойствами;
б) алициклические соединения – это все остальные карбоциклические соединения.
Они различаются по числу атомов углерода в цикле и в зависимости от характера связей между этими атомами могут быть предельными и непредельными;
3) гетероциклические соединения.
Виды органических соединений:
1) галогенопроизводные углеводороды: а) фторпроизводные; б) хлорпроизводные; в)бромопроизводные, г) йодопроизводные;
2) кислородосодержащие соединения: а) спирты и фенолы; б) простые эфиры; в) альдегиды; г) кетоны.
8. Типы органических соединений
Органические реакции, как и неорганические, подразделяются на 3 основных типа:
1) реакция замещения: СН4 + CI2 → СН3CI + НCI;
2) реакция отщепления: СН3СН2Br → СН2 = СН2 + НBr;
3) реакция присоединения: СН2 = СН2 + НBr → CН3СН2Br.
Поделитесь своими знаниями, ответьте на вопрос:
Вычислить массовую долю (в%) глюкозы в растворе, который получили при смешивании 70г. 12%-ного и 30г. 1, 5%-ного растворов глюкозы.
Связь между энергией активации ТАК и энтальпией активации.
Пересчет по уравнению Киркгоффа.
Энергия активации ТАК относится к реакции превращения реагентов в
активированный комплекс при абсолютном нуле температуры. При этой температуре
изменения энтальпии и внутренней энергии равны
0 0
0 0 ; 0 H UE T ТАК K
T
R
R
(1)
Энтальпия активации относится к той же самой реакции, но при более высокой
температуре Т. Пересчитаем энтальпию от температуры Т=0 К к температуре Т с
закона Кирхгоффа. Будем считать, что все участники реакции – идеальные газы,
тогда
0
0 0
0
T T
T ТАК p ТАК V
T
ТАК V
Н E c dT E c R d
E c dT RT
(2)
p
с равна разности теплоемкостей продуктов и реагентов. Для каждой теплоемкости
выполняется равенство
p V с c (3)
Активированный комплекс образуется из двух частиц-реагентов, поэтому
p V с c (4)
Соотношение (4) использовано в (2).
Допустим теперь, что для поступательных и вращательных степеней свободы
активированного комплекса и реагентов выполняется закон равнораспределения, т.е.
каждой степени свободы соответствует теплоемкость при любой температуре
1
2 Vс R
Теплоемкости, соответствующие колебательным степеням свободы, будем считать
близкими к нулю и не будем их учитывать в расчете. Тогда появляется возможность
рассчитать интеграл в формуле (2). Допустим, что активированный комплекс
и оба реагента – нелинейные частицы. Тогда у каждой будет по три поступательных и три
вращательных степени свободы. Получаем