Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу:
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 см
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё.
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 см
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 см
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 смОтношение площади треугольников с общей высотой равно отношению их оснований.
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 смОтношение площади треугольников с общей высотой равно отношению их оснований. ВН - общий катет и высота ∆ АВН и ∆ СВН
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 смОтношение площади треугольников с общей высотой равно отношению их оснований. ВН - общий катет и высота ∆ АВН и ∆ СВНS АВН:S CBH=AH:CH=36:25
zibuxin6
27.03.2021
Ch2-o-co-c17h35 ch2-oh i i ch-o-co-c17h35 + +> ch-oh + 3c17h35cooh i i ch2-o-co-c17h35 ch2-oh w(тристеарата)=100%-5%=95% m(тристеарата)=0,95*3,5=3,325 кг (3325 г) n=m\m m(тристеарата)=890 г\моль n(тристеарата)=3325\890=3,736 моль n(тристеарата)=n(c3h5(oh)3)=3,736 моль m=n*m m( c3h5(oh)3)=92 г\мольm( c3h5(oh)3)=92*3,736=343,712 г
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу:
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 см
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё.
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 см
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 см
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 смОтношение площади треугольников с общей высотой равно отношению их оснований.
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 смОтношение площади треугольников с общей высотой равно отношению их оснований. ВН - общий катет и высота ∆ АВН и ∆ СВН
Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: ВН=√АН•СН=√36 •25=6•5=30 смКатет есть среднее геометрическое между гипотенузой и проекцией этого катета на неё. ВС=√AC•CH=ç61•25=5√61 смАВ=√61•36=6√61 смОтношение площади треугольников с общей высотой равно отношению их оснований. ВН - общий катет и высота ∆ АВН и ∆ СВНS АВН:S CBH=AH:CH=36:25