пошаговое объяснение:
{ \begin{gathered}-x+y=2\hfill\\x+y={gathered}\right.\rightarrow \left\{ \begin{gathered}y=2+x\hfill\\x+y={gathered}\right.\rightarrow\left\{\begin{gathered}y=2+x\hfill\\x+2+x={gathered}\right.\rightarrow\left\{\begin{gathered}y=2+x\hfill\\2x+2=4\hfill {gathered}\right./tex]
{ \begin{gathered}y=2+x\hfill\\2x={gathered}\right. \rightarrow \left\{ \begin{gathered}y=2+x\hfill\\x={gathered} \right.\rightarrow \left\{ \begin{gathered}y=2+1\hfill\\x={gathered}\right.\rightarrow \left\{ \begin{gathered}y=3\hfill \\x={gathered}/tex]
ответ: x = 1; y = 3.
\begin{gathered} \frac{dx}{ { \cos}^{2}(x) \cos(y) } = ctg(x) \sin(y) dy \\ \int\limits \sin(y) \cos(y) dy = \int\limits \frac{dx}{ctg(x) { \cos}^{2}(x) } \\ \int\limits \sin(y) d( \sin(y)) = \int\limits \frac{ \sin(x) dx}{ { \cos}^{3}(x) } \\ \frac{ { \sin}^{2} (y) }{2} = - \int\limits \frac{d( \cos(x)) }{ { \cos}^{3} (x)} \\ \frac{ { \sin}^{2}(y) }{2} = - \frac{ { \cos }^{ - 2}(x) }{ - 2} + C \\ \frac{ { \sin}^{2}(y) }{2} = \frac{1}{2 { \cos}^{2}(x) } + C \\ { \sin }^{2} (y) = \frac{1}{ { \cos}^{2} (x)} + 2C \\ { \sin}^{2} (y) = \frac{1}{ { \cos}^{2}(x) } + C\end{gathered}
cos
2
(x)cos(y)
dx
=ctg(x)sin(y)dy
∫sin(y)cos(y)dy=∫
ctg(x)cos
2
(x)
dx
∫sin(y)d(sin(y))=∫
cos
3
(x)
sin(x)dx
2
sin
2
(y)
=−∫
cos
3
(x)
d(cos(x))
2
sin
2
(y)
=−
−2
cos
−2
(x)
+C
2
sin
2
(y)
=
2cos
2
(x)
1
+C
sin
2
(y)=
cos
2
(x)
1
+2C
sin
2
(y)=
cos
2
(x)
1
+C
общее решение
\begin{gathered}y=\pi,x=\frac{\pi}{3}\\{\sin}^{2}(\pi)=\frac{1}{ { \cos}^{2} (\frac{\pi}{3})} + 2C\\0=\frac{1}{\frac{1}{4}}+2C\\2C=-4\\C=-2\\{ \sin}^{2} (y) = \frac{1}{ { \cos}^{2}(x) } -2\end{gathered}
y=π,x=
3
π
sin
2
(π)=
cos
2
(
3
π
)
1
+2C
0=
4
1
1
+2C
2C=−4
C=−2
sin
2
(y)=
cos
2
(x)
1
−2
Поделитесь своими знаниями, ответьте на вопрос: