числа разделяются на классы. целые положительные числа - n = {1, 2, 3, … } - составляют множество натуральных чисел. зачастую и 0 считают натуральным числом.
множество целых чисел z включает в себя все натуральные числа, число 0 и все натуральные числа, взятые со знаком минус: z = {0, 1, -1, 2, -2, …}.
каждое рациональное число x можно задать парой целых чисел (m, n), где m является числителем, n - знаменателем числа: x = m/n. эквивалентным представлением рационального числа является его в виде числа, записанного в позиционной десятичной системе счисления, где дробная часть числа может быть конечной или бесконечной периодической дробью. например, число x = 1/3 = 0,(3) представляется бесконечной периодической дробью.
числа, задаваемые бесконечными непериодическими дробями, называются иррациональными числами. таковыми являются, например, все числа вида vp, где p - простое число. иррациональными являются известные всем числа и e.
объединение множеств целых, рациональных и иррациональных чисел составляет множество вещественных чисел. образом множества вещественных чисел является прямая линия - вещественная ось, где каждой точке оси соответствует некоторое вещественное число, так что вещественные числа плотно и непрерывно заполняют всю вещественную ось.
плоскость представляет образ множества комплексных чисел, где вводятся уже две оси - вещественная и мнимая. каждое комплексное число, задаваемое парой вещественных чисел, представимо в виде: x = a+b*i, где a и b - вещественные числа, которые можно рассматривать как декартовы координаты числа на плоскости.
Поделитесь своими знаниями, ответьте на вопрос:
Строительная бригада может построить четыре дачных дома за 28 дней.сколько таких домов может построить эта бригада за 63 дня