Artyom
?>

Решите уравнение 3 1\5+2 2\5-х=3 1\10-1 1\5

Математика

Ответы

irinatikhonov

5 3/5-х=31/10-12/10=19/10

х=19/10-5 3/5=19/10-18/5=19/10-36/10

х=-17/10

irinalav2705745

Точка x0 является точкой максимума функции y=f(x), если для всех x из ее окрестности выполняется неравенство f(x0)≥f(x). Точка x0 является точкой минимума функции y=f(x), если из ее окрестности для всех x выполняется неравенство f(x0)≤f(x). Значения функции, которые соответствуют точкам экстремума, называются экстремумами функции, это значения на оси Oy.

Для того чтобы найти экстремумы функции можно использовать любой из трех условий экстремума, если функция удовлетворяет эти условиям.

Первым достаточным условием экстремума являются следующие утверждения: если в точке x0 функция непрерывна, и в ней производная меняет знак с плюса на минус, то точка x0 является точкой максимума, а если в данной точке производная меняет знак с минуса на плюс, то x0 – точка минимума.

Пошаговое объяснение:

kraevaea

Приведем примерный алгоритм получения необходимых данных.

1.Нахождение области определения функции

Определение интервалов, на которых функция существует.

!!! Очень подробно об области определения функций и примеры нахождения области определения тут.

2.Нули функции

Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.

3.Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.  

4.Промежутки знакопостоянства

Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.  

5. Промежутки возрастания и убывания функции.

Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.

6. Выпуклость, вогнутость.

Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.  

7. Наклонные асимптоты.

 

Пример исследования функции и построения графика №1

Исследовать функцию средствами дифференциального исчисления и построить ее график.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение 3 1\5+2 2\5-х=3 1\10-1 1\5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

TatiyanaBe20135263
kate1610
clic1968420
SaraevaTretyakov1941
arhangel1055
inna-zub
kireevatatiana
dashkevich-76611
superniki87
airon-082054
loa364
drozd228758
glebovaludok
Усошина1059
борисовна Елена78