площадь S=376м²
1 клетка 4м
стороны треугольника находим через теорему Пифагора .
треугольник вписан в прямоугольник из клеток с размером в длину 8 и ширину 7 клеток.
треугольник ΔACE вписанный в четырёхугольный прямоугольник □ ABDF , образует прямоугольные треугольники ΔABC где<В=90° , ΔCDE где <D=90° и
ΔAFE где <F=90°.
AF=BC+CD ,
AB=DE+EF ,
BC=3 кл ,
CD=5 кл ,
AF=8 кл ,
DE=4 кл ,
EF=3 кл ,
AB=7 кл.
переводим на метры
BC=3×4=12м,
CD=5×4=20м,
AF=8×4=32м,
DE=4×4=16м,
EF=3×4=12м ,
AB=7×4=28м .
по теореме Пифагора находим для каждого прямоугольного треугольника гипотенузы, которые являются в свою очередь сторонами ΔACE.
для ΔABC
AC=√AB²+BC²=√28²+12²=√784+144=√928
для ΔCDE
CE=√CD²+DE²=√20²+16²=√400+256=√656
для ΔAFE
AE=√AF²+EF²=√32²+12²=√1024+144=√1168
находим площадь прямоугольных треугольников
ΔABC
S1=ab/2= AB×BC/2=28×12/2=168 м²
ΔCDE
S2=CD×DE/2=20×16/2=160 м²
ΔAFE
S3= AF×EF/2=32×12/2=192 м²
площадь четырёхугольника □ABDF
S□=a×b=AB×AF=28×32=896 м²
площадь четырехугольника равна сумме площадей треугольников ΔACE, ΔABC , ΔCDE и ΔAFE:
S□=SΔACE +S1+S2+S3 ,
отсюда можно найти площадь ΔACE
SΔACE= S□- (S1+S2+S3),
SΔACE=896 - (168 + 160 + 192)=896 - 520 = 376м²
периметр участка, треугольника ΔACE
P=AC+CE+AE=√928 +√656 +√1168 = округленно 90,25 м
29) 192
38) 6
Пошаговое объяснение:
29) Для арифметической прогрессии справедливо соотношение
Сумма членов с номерами 1 и n, равна сумме членов с номерами 2 и (n-1), равна сумме членов с номерами 3 и (n-2) и т.д. То есть если сумма номеров членов последовательности равна n+1, то равны и их суммы.
Ряд составленный из членов с номерами 3,6,9,...,3n это тоже арифметическая прогрессия значит равны суммы членов с такими номерами:
3 и 3n;6 и 3n-3;9 и 3n-612 и 3n-9То есть, если сумма номеров членов последовательности равна 3n+3, то равны и их суммы. А сумма всех членов последовательности от 3 до 3n с шагом 3 равна сумме первого и последнего, т.е n и 3n умноженное на количество таких пар, а оно равно n/2
Складываем 2n+1 и n+2, эта сумма равна 3n+3
Значит a3+a6+a9+...a3n=(a[2n+1] + a[n+2])*n/2=23*n/2=736
n=736*2/23=64
А количество членов арифметической прогрессии равно 3*64=192
38) Функция 3+5x-x^2 достигает своего максимума в точке, которая является центром отрезка [x1,x2], где x1,x2 это корни квадратного уравнения 3+5x-x^2=0. По теореме Виета сумма корней приведенного квадратного уравнения равна коэффициенту перед первой степенью x со знаком минус. В нашем случае это 5, тогда функция принимает максимальное значение при x=
. Найдем член последовательности при n=2 он равен 9,при n=3 он тоже равен 9.
Значит значение наибольшего члена последовательности равно 9.
ответ: 15-9=6.
Поделитесь своими знаниями, ответьте на вопрос: