46 5/7 =
5
46 _
7
= сорок шесть целых пять седьмых
Пошаговое объяснение:
10× 4/7 = 10·4/7 = 40/7 = 5·7 + 5/7 = 5 5/7
5 5/7 - 29 = 5 + 5/7 - 29 = 5/7 - 24 = 5/7 - 24·7/7 = 5/7 - 168/7 = 5 - 168/7 = - 163/7 = - 23·7 + 2/7 = -23 2/7
-23 2/7 - 1/14 = - 23 - 2/7 - 1/14 = -23 - 2 · 2/7 · 2 - 1 · 1/14 · 1 = -23 - 4 14 - 1/14 = - 23 - 4 + 1/14 = - 23 - 5/14 = -23 5/14
-23 5/14 ÷ 1 2 = - 5 + 23·14/14 ÷ 1 2 = - 327/14 ÷ 1 2 = - 327/14 × 2/1 = - 327·2/14·1 = - 654/14 = - 327 · 2/7 · 2 = - - 327/7 = - 46·7 + 5/7 = -46 5/7
ответ: Точка (2;3;–1) принадлежит данной прямой.
Составим уравнение прямой || нормальному вектору плоскости
n=(1;4;–3)
(x–2)/1=(y–3)/4=(z–1)/(–3)
Найдем координаты точки K – точки пересечения этой прямой и плоскости
Решаем систему:
{(x–2)/1=(y–3)/4=(z–1)/(–3)
{x+4y–3z+7=0
Обозначим отношение
(x–2)/1=(y–3)/4=(z–1)/(–3) = λ ⇒
получим параметрические уравнения прямой
x= λ +2
y= 4λ +3
z=–3 λ +1
подставим в уравнение плоскости
( λ +2) +4·(4λ +3)–3·(–3 λ +1)+7=0
26 λ=–18
λ=–9/13
xК=(–9/13)+2=
yК=4·(–9/13)+3=
zК=–3·(–9/13)+1=
Найдем координаты точки В – точки пересечения данной прямой и данной плоскости.
Решаем систему:
{(x–2)/5=(y–3)/1=(z+1)/2
{x+4y–3z+7=0
Обозначим отношение
(x–2)/5=(y–3)/1=(z+1)/2=t ⇒
получим параметрические уравнения прямой
x=5t+2
y=t+3
z=2t+1
подставим в уравнение плоскости
5t+2+4·(t+3)–3·(2t+1)+7=0
3t=–18
t=–6
x=5·(–6)+2=–28
y=–6+3=–3
z=2·(–6)+1=–11
В(–28; –3; –11)
Составляем уравнение прямой ВК, как уравнение прямой, проходящей через две точки
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Из 225 кг руды получили 34, 2 кг меди. каково процентное содержание меди в руде?