№ 1:
из натуральных чисел от 1 до 321 включительно исключите все числа, делящиеся на 4, но не делящиеся на 5, и все числа, делящиеся на 5, но не делящиеся на 4. сколько чисел останется?
решение: число чисел делящихся на 4 равно 321/4=(округление с недостатком)=80
число чисел делящихся на 5 равно 321/5=( округление с недостатком)=64
число чисел делящихся и на 4 и на 5 совпадает с числом чисел делящихся на 4*5=20, и их 321/20=( округление с недостатком)=16
если от исходного количества чисел 321 отнять число чисел, делящихся на 4, но прибавить число чисел, делящихся на 20, то в результате будут отняты только числа, делящиеся на 4, но не делящиеся на 5. по аналогии, если от остатка отнять число чисел, делящихся на 5, но прибавить число чисел, делящихся на 20, то в результате еще будут отняты только числа, делящиеся на 5, но не делящиеся на 4.
321-80+16-64+16=209
ответ: 209 чисел
24 - сумма чисел в вершинах
Пошаговое объяснение:
Обозначим числа в вершинах квадрата как a, b, c, d.
Тогда, возле каждой стороны квадрата стоят произведения ab, bc, cd, ad, сумма которых равна 143.
Составим уравнение:
ab+bc+cd+ad=143
(ab+bc)+(cd+ad)=143
b(a+c)+d(a+c)=143
(a+c)(b+d)=143
Число 143 имеет 4 делителя, на которые оно делится без остатка и дробей: 1, 143, 11, 13. Числа 1 и 143 в расчёт не принимаем, т.к. по условию, в вершинах квадрата написали 4 натуральных числа.
Остаются два числа - 11 и 13:
143 = 11*13 = 13*11
Следовательно, a+c=11 и b+d=13 или a+c=13 и b+d=11
Но в любом случае, (a+c)+(b+d) = а + b + с + d = 11 + 13 = 24
Поделитесь своими знаниями, ответьте на вопрос:
Краткое содержание оперы "хованщина" простым и понятным языком. : )