Раисовна878
?>

Вклассе 17 мальчиков , а девочек на 6 больше .сколько процентов класса составляют девочки и сколько процентов класса составляют малочики

Математика

Ответы

Goldaram84
1) 17 + 6 = 23 (дев.)
2) 17 + 23 = 40 (уч.) - 100%.
3) 40 : 100% = 0.4 (уч.) - 1%.
4) 17 : 0.4 = 42.5% - мальчиков.
5) 23 : 0.4 = 57.5% - девочек.
ответ: 42.5% - мальчиков и 57.5% - девочек.
Borisovich-Volobueva1803

Правильні п'ятикутники

Правильний п'ятикутник має п'ять ліній дзеркальної симетрії, і обертову симетрію[en] 5-го порядку (у 72°, 144°, 216° і 288°). Діагоналі опуклого правильного п'ятикутника знаходиться у пропорції золотого перетину до його сторін.

Виведення формули площі

Площа довільного правильного многокутника дорівнює:

{\displaystyle A={\frac {1}{2}}Pa}{\displaystyle A={\frac {1}{2}}Pa}

де P — периметр многокутника, a — апофема. Підставляючи відповідні значення параметрів P та a, отримуємо формулу:

{\displaystyle A={\frac {1}{2}}\times {\frac {5t}{1}}\times {\frac {t\tan(54^{\circ })}{2}}}{\displaystyle A={\frac {1}{2}}\times {\frac {5t}{1}}\times {\frac {t\tan(54^{\circ })}{2}}}

з {\displaystyle t}t відома довжина бічної сторони. Можна записати формулу в вигляді:

{\displaystyle A={\frac {1}{2}}\times {\frac {5t^{2}\tan(54^{\circ })}{2}}={\frac {5t^{2}\tan(54^{\circ })}{4}}}{\displaystyle A={\frac {1}{2}}\times {\frac {5t^{2}\tan(54^{\circ })}{2}}={\frac {5t^{2}\tan(54^{\circ })}{4}}}

Виведення формули довжини діагоналі

Довжину діагоналі правильного многокутника (далі по тексту D) можна обчислити через бічну сторону, за до золотого перетину {\displaystyle \phi }\phi . Оскільки,

{\displaystyle {\frac {D}{T}}=\varphi ={\frac {1+{\sqrt {5}}}{2}}.}{\displaystyle {\frac {D}{T}}=\varphi ={\frac {1+{\sqrt {5}}}{2}}.}

Відповідно:

{\displaystyle D=T\times \varphi \ .}{\displaystyle D=T\times \varphi \ .}

Радіус вписаного кола

Як і в будь-який опуклий багатокутник у правильний опуклий п'ятикутник можна вписати коло. Апофема, що є радіусом r кола вписаного в правильний п'ятикутник співвідноситься із довжиною сторони t:

{\displaystyle r={\frac {t}{2\tan(\pi /5)}}={\frac {t}{2{\sqrt {5-{\sqrt {20\approx 0.6882\cdot t.}{\displaystyle r={\frac {t}{2\tan(\pi /5)}}={\frac {t}{2{\sqrt {5-{\sqrt {20\approx 0.6882\cdot t.}

Методи побудови

Правильний п'ятикутник можна побудувати за до циркуля та лінійки, оскільки число 5 є числом Ферма. Відомо багато методів побудови правильного п'ятикутника. Деякі з них наведено нижче.

Метод Річмонда

Richmond pentagon 1.PNG

Richmond Pentagon 2.PNG

Побудова правильного п'ятикутника методом Річмонда[1]

Одним із методів побудови правильного п'ятикутника в середині заданого кола є метод, описаний Річмондом[2].

Перше зображення показує побудову, яка використовується в методі Річмонда для побудови сторони вписаного п'ятикутника. Коло, яким задають п'ятикутник має одиничний радіус. Його центр знаходиться в точці C, а середня точка M відмічена по середині його радіуса. Цю точку з'єднали із точкою на колі, що знаходиться вертикально над центром в точці D. Кут CMD поділено бісектрисою навпіл, і ця бісектриса перетинає вертикальну вісь в точці Q. Горизонтальна лінія, проведена через точку Q перетинає коло в точці P, а хорда PD є стороною вписаного п'ятикутника.

Визначимо довжину цієї побудованої сторони. Два правильні трикутники DCM і QCM показані внизу під колом. Використовуючи теорему Піфагора і дві сторони, гіпотенузу більшого трикутника можна знайти наступним чином {\displaystyle \scriptstyle {\sqrt {5}}/2}{\displaystyle \scriptstyle {\sqrt {5}}/2}. Сторону h меншого трикутника тоді можна знайти за до формули половинного кута:

{\displaystyle \tan(\phi /2)={\frac {1-\cos(\phi )}{\sin(\phi )}}\ ,}{\displaystyle \tan(\phi /2)={\frac {1-\cos(\phi )}{\sin(\phi )}}\ ,}

де косинус і синус кута ϕ відомі із більшого трикутника. В результаті отримаємо:

{\displaystyle h={\frac {{\sqrt {5}}-1}{4}}\ .}{\displaystyle h={\frac {{\sqrt {5}}-1}{4}}\ .}

Знаючи довжину сторони, тепер перейдемо до нижньої діаграми для того, щоб знайти сторону s правильного п'ятикутника. Спершу, сторону a трикутника праворуч можна знайти за до теореми Піфагора:

{\displaystyle a^{2}=1-h^{2}\ ;\ a={\frac {1}{2}}{\sqrt {\frac {5+{\sqrt {5}}}{2}}}\ .}{\displaystyle a^{2}=1-h^{2}\ ;\ a={\frac {1}{2}}{\sqrt {\frac {5+{\sqrt {5}}}{2}}}\ .}

Потім знайдемо s за до теореми Піфагора і трикутника, що ліворуч:

{\displaystyle s^{2}=(1-h)^{2}+a^{2}=(1-h)^{2}+1-h^{2}=1-2h+h^{2}+1-h^{2}=2-2h=2-2\left({\frac {{\sqrt {5}}-1}{4}}\right)\ }{\displaystyle s^{2}=(1-h)^{2}+a^{2}=(1-h)^{2}+1-h^{2}=1-2h+h^{2}+1-h^{2}=2-2h=2-2\left({\frac {{\sqrt {5}}-1}{4}}\right)\ }

{\displaystyle ={\frac {5-{\sqrt {5}}}{2}}\ .}{\displaystyle ={\frac {5-{\sqrt {5}}}{2}}\ .}

Таким чином сторона s буде дорівнювати:

{\displaystyle s={\sqrt {\frac {5-{\sqrt {5}}}{2}}}\ ,}{\displaystyle s={\sqrt {\frac {5-{\sqrt {5}}}{2}}}\ ,}

Пошаговое объяснение:

myataplatinumb348

Пошаговое объяснение:

47466*

Число делится на 45 , если оно одновременно делится на 5 и на 9

На 5 число делится , если его последняя цифра 5 или 0

На 9 число делится, если сумма его цифр делится на 9

Значит последняя цифра числа должна быть 0 или 5 , а сумма цифр кратна 9

Сумма известных цифр :

4+7+4+6+6= 27 - это число уже делится на 9 , значит последняя цифра может быть 0

Следующее число , которое делится на 9 это 36

36-27= 9 - эта цифра не подходит, т.к. тогда число не будет делится на 5

ответ : подходит цифра 0

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вклассе 17 мальчиков , а девочек на 6 больше .сколько процентов класса составляют девочки и сколько процентов класса составляют малочики
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

milanparipovic864
Решетникова
Irina1435
kryshtall2276
aquilonis
abakas235
tumanowivan2015509
andre6807
Titeeva-Vladimirovich283
juliapierrat
uchpapt
AkulovaAnastasiya
Yevgenii_Gurtovaya1532
Misyura_Viktoriya1683
al2nik2ol