Valentinovna
?>

Найдите значение выражения 5^log5 2+1

Математика

Ответы

Irina Svetlana
5^{ log_{5} 2 +1 }
5^{ log_{5} 2 } * 5^{1}
5^{ log_{5} } сокращается и остается 2
2* 5=10
Nertman45
Привет!
Механическая работа. Мощность
Механическая работа

Если действующая на тело сила F вызывает его перемещение s, то действие этой силы характеризуется величиной, называемой механической работой (или, сокращенно, просто работой) .

Механической работой А называют скалярную величину, равную произведению модуля силы F, действующей на тело, и модуля перемещения s, совершаемого телом в направлении действия этой силы, т. е.
А=Fs. (3.9)
рисунок 30

В случае, описываемом формулой (3.9), направление перемещения тела совпадает с направлением силы. Однако чаще встречаются случаи, когда сила и перемещение составляют между собой угол, не равный нулю или p. (рис. 30)

Разложим силу F на две взаимно перпендикулярные составляющие F1 и F2 (F=F1+F2). Поскольку механическая работа - величина скалярная, то работа силы F равна алгебраической сумме работ сил F1 и F2, т. е. А=А1+А2.

Под действием силы F2 тело перемещения не совершает, так как F2^s. Поэтому A2=0. Следовательно, работа А=А1=F1s. Из рисунка видно, что F1=Fcosa. Поэтому
А=Fsсоsa. (3.10)

Таким образом, в общем случае механическая работа равна произведению модуля силы и модуля перемещения на косинус угла между направлениями силы и перемещения. Работа силы, направленной вдоль перемещения тела, положительна, а силы, направленной против перемещения тела, - отрицательна. По формулам (3.9) и (3.10) вычисляют работу постоянной силы. Единицу механической работы устанавливают из формулы (3.9). В СИ за единицу работы принята работа силы 1 Н при перемещении точки ее приложения на 1 м. Эта единица имеет наименование джоуль (Дж) :
1 Дж = 1Н·1м.
http://www.edu.yar.ru/russian/projects/socnav/prep/phis001/soh/sohran17.html
Удачи!
victoria-112296363

10.5. Свойства производных, связанные с арифметическими действиями над функциями

Теорема 3. Если функции y1 = f1(x) и y2 = f2(x) заданы в окрестности точки x0 принадлежит R, а в самой точке x0 имеют конечные производные, то функции lamda1 f1(x) +lamda2 f2(x), lamda1 принадлежит R, lamda1 принадлежит R, f1(x)f2(x), а в случае f2(x0)не равно0 и функции f1(x)/f2(x) также имеют в точке x0 конечные производные; при этом имеют место формулы

(lamda1 y1 +lamda2 y2)' = lamda1 y'1 +lamda2 y'2, (10.21)

(y1y2)' = y'1y2 + y1y'2, (10.22)

(10.23)

(в формулах (10.21)-(10.23) значения всех функций взяты при x = x0).

Прежде всего заметим, что в силу условий теоремы в точке x0 существуют конечные пределы

(дельтаy1/дельтаx) = y'1, (дельтаy2/дельтаx) = y'2.

Докажем теперь последовательно формулы (10.21)-(10.23).

1) Пусть y = lamda1 y1 +lamda2 y2; тогда

дельта y = (lamda1( y1 + дельтаy1) + lamda2( y2 + дельтаy2)) - (lamda1y1 + lamda2y2) = lamda1дельтаy1 + lamda2дельтаy2

и, следовательно,

дельтаy1/дельтаx = lamda1дельтаy1/дельтаx + lamda2дельтаy2/дельтаx.

Перейдя здесь к пределу при дельтаx0, получим формулу (10.21).

2) Пусть y2 = y1y2; тогда

дельта y = ( y1 + дельтаy1)( y2 + дельтаy2)) - y1y2 = y2y1 + y2дельтаy1 + y1дельтаy2 + дельтаy1дельтаy2,

откуда

дельтаy1/дельтаx = y2дельтаy1/дельтаx + y1дельтаy2/дельтаx. (10.24)

Заметив, что в силу непрерывности функции f2 в точке x0 выполняется условие дельтаy2 = 0, и, перейдя в равенстве (10.24) к пределу при дельтаx0, получим формулу (10.22).

3. Пусть f2(x0)не равно0, и y = y1/y2; тогда

следовательно,

Перейдя здесь к пределу при дельтаx0, получим формулу (10.23). начало

Отметим, что из формулы (10.21) при y2 = 0 (так же, как и из формулы (10.22), когда функция y2 равна постоянной, а поэтому y'2 = 0) следует, что постоянную можно выносить из-под знака дифференцирования, т. е.

(lamday)' = lamday', lamda принадлежит R.

Пример. Вычислим производную функции tg x. Применяя формулу (10.23), получим

Итак,

(tg x)' = 1/cos2x.

Аналогично вычисляется

(ctg x)' = -1/sin2x.

Замечание. Поскольку dx = y'dx, то, умножая формулы (10.21)-(10.23) на dx, получим

d(lamda1 y1 +lamda2 y2) = lamda1dy1 +lamda2 dy',

d(y1y2) = y2dy1 + y1dy2,

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение выражения 5^log5 2+1
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tenvalerij
baron
aa276568
Nikolai710
AleksandrIvanovich1273
samirmajbubi
Kisuha8465
sanhimki47
stsnab
juliapierrat
braigon974
Ye.Vadim
kodim4
Melsan19914239
mgrunova