Стародавні греки встановили надзвичайно цікавий факт, що існує всього п’ять правильних опуклих многогранників різної форми (тетраедр, гексаедр, октаедр, додекаедр, ікосаедр).
Правильні многогранники, крім куба, мали невелике поширення в практиці. Вони рідко зустрічаються в архітектурі, у живопису, проте іноді вони стають у пригоді.
Наведемо приклад. Легко впевнитись, що вершини кожного з п’яти видів правильних многогранників, в тому числі й ікосаедра, лежать на кульовій поверхні. Дванадцять вершин ікосаедра – це максимальне число точок, які можна нанести на поверхню кулі так, щоб відстань між будь-якими двома сусідніми точками була однакова.
Цю властивість ікосаедра застосувала одна з американських фірм для виготовлення баскетбольних м’ячів. На поверхні сферичної основи встановили 12 точок, рівномірно розділених по каркасу (вершини ікосаедра). Машина намотує нейлонові нитки по колам великих кругів, які проходять через кожну пару зазначених точок. Коли таке намотування буде повторено багато разів, причому, починаючи щоразу з різних пар точок, камера буде покрита цілком рівномірно, що забезпечить однакову міцність кожного її квадратного сантиметра.
ПЕРВЫЙ ВАРИАНТ РЕШЕНИЯ
Пусть х км/час – скорость второго легкового автомобиля.
За 7 часов первый автомобиль проехал:
S (расстояние) =v (скорость)*t (время)=110*7=770 км
Второй автомобиль за 7 часов проехал 7х км
Составим уравнение:
770+7х=1400
7х=1400-770
7х=630
х=90 км/час – скорость второго автомобиля.
ответ: скорость второго автомобиля составляет 90 км/ч.
ВТОРОЙ ВАРИАНТПоделитесь своими знаниями, ответьте на вопрос:
Решить уравнение с выбором ответа (? )8/3х-4 1/х = 3 1/3 а) 2 в)7 с)5 d)4