Puschdom
?>

Выполни действия: 10 - (3 5/11 + 1 8/11) + 4 2/11 ( 4 7/8 +2 5/8) - (5 1/8 - 3 3/8)

Математика

Ответы

Nv-444
1)3 5/11+1 8/11=4 13/11=5 2/11
2)10-5 2/11=9 11/11-5 2/11=4 9/11
3)4 2/11+4 9/11=8 11/11=9
номер2:
1)4 78/+2 5/8=6 12/8=7 1/2
2)5 1/8-3 3/8=41/8-27/8=20/8=5/2=2 1/2
3)7 1/2-2 1/2=5
evatautes

История обыкновенных дробей

   Дроби появились в глубокой древности. При разделе добычи, при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести дроби.

   Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа -2/3- у них был специальный значок. Между прочим, это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе единицу (так называемые основные дроби): 1/2; 1/3; 1/28; ... . Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно. В папирусе Ахмеса есть задача :

"Разделить 7 хлебов между 8 людьми". Если резать каждый хлеб на 8 частей, придётся провести 49 разрезов.

А по-египетски эта задача решалась так: Дробь 7/8 записывали в виде долей: 1/2+1/4+1/8. Значит каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезали пополам, два хлеба- на 4 части и один хлеб на 8 долей, после чего каждому дали его часть.

    Но складывать такие дроби было неудобно. Ведь в оба слагаемых могут входить одинаковые доли, и тогда при сложении появится дробь вида 2/n. А таких дробей египтяне не допускали. Поэтому, папирус Ахмеса начинается с таблицы, в которой все дроби такого вида от 2/5 до 2/99 записаны в виде суммы долей.

   Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением.

   В древнем Вавилоне предпочитали наоборот, - постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Но было неудобно работать над натуральными числами, записанными по десятичной системе, и дробями, записанными по шестидесятеричной. А работать с обыкновенными дробями было уже совсем трудно. Поэтому голландский математик Симон Стевин предложил перейти к десятичным дробям

   Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.

   Даже сейчас иногда говорят:"Он скрупулёзно изучил этот вопрос." Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово "скрупулёзно" от римского названия 1/288 асса - "скрупулус". В ходу были и такие названия: "семис"- половина асса, "секстанс"- шестая его доля, "семиунция"- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию ( 2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.

   Современную систему записи дробей с числителем и знаменателем создали в Индии. Только там писали знаменатель сверху, а числитель - снизу, и не писали дробной черты.

Пошаговое объяснение:

Shcherbinin KOLIChEVA
1. 
 74а²b³хуz² 
Складываем показатели степеней всех переменных и получаем степень одночлена:
 2+3+1+2 = 8
ответ: степень одночлена равна 8 .

2. 
    5а³bс²(-0,2аbс³)(-аb) = 5·(-0,2)·(-1)·а³⁺¹⁺¹b¹⁺¹⁺¹c²⁺³ = a⁵b³c⁵
ответ: a⁵b³c⁵

3. 
 2а²+2b²+3с²-аbс+а-b+7
Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
Наибольшая степень у одночлена аbс.
1+1+1=3
ответ: это многочлен третей степени, т.к. наибольшая степень  равна 3.

4. 
Приведём подобные члены:
2х²у³-ху³-у⁴-х²у³+ху³+2у⁴ = х²у³+у⁴
Получили многочлен 5-й степени, записанный в стандартном виде.
ответ: х²у³+у⁴

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выполни действия: 10 - (3 5/11 + 1 8/11) + 4 2/11 ( 4 7/8 +2 5/8) - (5 1/8 - 3 3/8)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

alexkortyukov
kononova_Pavel689
Егорова
Алексеевич949
infocenterbla
Эдуардович873
Романенко
zabrodin
Kalmikova1666
Valentinovna
Герасименко
Ivanova55878
girra
Arutyunovich
Михайловна-Гусева350