snabdonm501
?>

Аплюс 2 плюс 3 минус 1 плюс и минус 2 при а равно минус 2

Математика

Ответы

titancore
А+2+3-1-2 А+5-3 А-2 При А=-2, то а-2=-2-2=-4 ответ -4.
alexderru

График прямой задается формулой y = kx + l, где k и l — некоторые коэффициенты, x — независимая переменная, которая называется линейной функцией.

Имеем три точки: (-2; \ b), \ (1; \ b^{2}); \ (4; \ 3), где b — параметр, который нужно найти.

Подставляя соответствующие координаты в функцию, получаем систему из трех линейных уравнений с тремя неизвестными:

\left\{\begin{matrix}b = -2k + l \\ b^{2} = k + l \ \ \\ 3 = 4k + l \ \ \end{matrix}\right.

Из третьего уравнения: l = 3 - 4k. Подставим l = 3 - 4k в первое и во второе уравнение:

\displaystyle \left \{ {{b = -2k + 3 - 4k} \atop {b^{2} = k + 3 - 4k \ \ }} \right.

\displaystyle \left \{ {{b = 3 - 6k \ } \atop {b^{2} = 3 - 3k }} \right.

Выразим из второго уравнения k:

-3k = b^{2} - 3

k = -\dfrac{b^{2} - 3}{3}

Подставим k = -\dfrac{b^{2} - 3}{3} в первое уравнение:

b = 3 - 6 \cdot \left( -\dfrac{b^{2} - 3}{3} \right)

b = 3 + 2(b^{2} - 3)

b = 3 + 2b^{2} - 6

2b^{2} - b - 3 = 0

Решим полученное квадратное уравнение через дискриминант:

D = (-1)^{2} - 4 \cdot 2 \cdot (-3) = 1 + 24 = 25

b_{1,2} = \dfrac{1 \pm \sqrt{25}}{2 \cdot 2} = \dfrac{1 \pm 5}{4}

Таким образом, имеем: b_{1} = -1; \ b_{2} = 1,5

ответ: b_{1} = -1; \ b_{2} = 1,5

ПодлеснаяМакарова1883

Прямая, которая задается уравнением ax + by = c, можно переписать в виде функции y = kx + l, где k = -\dfrac{a}{b}, \ l = \dfrac{c}{b}

Коэффициент k отвечает за наклон прямой, равный тангенсу угла \alpha, образованного данной прямой и положительным направлением оси Ox, то есть k = \text{tg} \, \alpha

Если k 0, то график функции возрастает.

Если k < 0, то график функции убывает.

Если k = 0, то график ни возрастает, ни убывает — имеем прямую y = l, параллельную оси абсцисс.

а) Пусть прямая проходит через две точки: (0; \ 0) и \left(\dfrac{2}{3}; -\dfrac{5}{6} \right)

Тогда, подставляя соответствующие координаты точек в функцию y = kx + l, получим систему двух линейных уравнений:

\displaystyle \left \{ {{0 = 0k + l \ \ } \atop {-\dfrac{5}{6} = \dfrac{2}{3}k + l }} \right.

Тогда k = -\dfrac{5}{4} и l = 0

\text{tg} \, \alpha = -\dfrac{5}{4} \Rightarrow \alpha = -\text{arctg} \, \dfrac{5}{4} — тупой угол наклона

Так как k < 0, то график функции убывает.

б) Пусть прямая проходит через две точки: \left(-\dfrac{1}{4}; \dfrac{1}{9} \right) и \left(\dfrac{1}{3}; \dfrac{1}{9} \right). Тогда

\displaystyle \left \{ {{\dfrac{1}{9} = -\dfrac{1}{4} k + l } \atop {\dfrac{1}{9} = \dfrac{1}{3}k + l \ \ }} \right.

Тогда k = 0 и l = \dfrac{1}{9}

\text{tg} \, \alpha = 0 \Rightarrow \alpha = 0^{\circ}

Так как k = 0, то график функции ни возрастает, ни убывает.

в) Пусть прямая проходит через две точки: \left(2a; \ a \right) и \left(8a; \ 4a \right), где a\neq 0 — параметр. Тогда

\displaystyle \left \{ {{a = 2a k + l \ } \atop {4a = 8ak + l }} \right.

Умножим первое уравнение на 4 и получаем:

\displaystyle \left \{ {{4a = 8ak + 4l} \atop {4a = 8ak + l \ }} \right.

Тогда k = \dfrac{1}{2} и l = 0

\text{tg} \, \alpha = \dfrac{1}{2} \Rightarrow \alpha = \text{arctg} \ \dfrac{1}{2} — острый угол наклона

Так как k 0, то график функции возрастает.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Аплюс 2 плюс 3 минус 1 плюс и минус 2 при а равно минус 2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Andei
Aleksandr-Andrei
Виталий
ilds88
Банова_Елена431
volodinnikolay19
Mariya694
bikemaster
misie1974
ivan-levermor
Анатольевна824
vikapar2646
masha812
Svetlana395
Ulianev77