Треугольники будут подобны по 2-му признаку(Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны), а из свойств подобия треугольников, получается, что отношение периметров и длин биссектрис , медиан , высот и серединных перпендикуляров равно коэффициенту подобия. А коэффициент подобия, в данном случае, равен 2(свойство средней линии). значит периметр треугольника ВMN равен половине периметра треугольника АВС: 4 корня из 7: 2= 2 корня из 7
fygasika
28.02.2021
Доказательство проводится в 3 шага. 1 пример. 1шаг- проверяем при n=1: 0^1=0 -верно; 2шаг- предполагаем, что исходное (т.е. 0^n=0) верно при n=k, k€N: 0^k=0 -верное 3 шаг- доказываем, что равенство верно и при n=k+1: 0^(k+1)=0^k•0^1=0•0=0 - первый сомножитель верный 0 согласно п.2, второй согласно п.1, значит 0^n=0 верно для любого натурального n, ч.т.д. 2 пример. 1) при n=1 a^1<b^1, а<b -выполняется; 2) полагаем, что при n=k a^k<b^k тоже выполняется 3) проверяем при n=k+1: a^(k+1)<b^(k+1), a^k•a^1<b^k•b^1, а^k•а<b^k•b Согласно свойству неравенства одинаковых знаков с положительными членами можно почленно умножать и делить, следовательно, полученное неравенство верное для n=k+1, значит и для любого n. ч.т.д. 3 пример 1) n=1, a^1•b^1=a•b=(ab)^1 верно; 2) полагаем, что при n=k a^k•b^k=(ab)^k -верное; 3) проверяем при n=k+1, используя свойства показателей: a^(k+1)•b^(k+1)= a^k•a^1•b^k•b^1= (ab)^k•(ab)^1 сомножители верны согласно п.2 и п.1, значит для любого натурального n a^n•b^n=(ab)^n, ч.т.д.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Кот матроскин заготовил 4/5 необходимого на зиму количества дров за 16 дней.определи какую часть дров заготовил кот матроскин за 1 день