Викторович Попков
?>

Начерти в тетради фигуру состоящую из стольких же клеток, что и данная фигура, но другой формы

Математика

Ответы

ASRodichev
А какая фигура дана изначально
aananasAnastiya1270

{

Вероятностью (вероятностной мерой) называется мера (числовая функция) {\displaystyle \mathbf {P} }\mathbf {P} , заданная на множестве событий, обладающая следующими свойствами:

Неотрицательность: {\displaystyle \forall A\subset X\colon \mathbf {P} (A)\geqslant 0}\forall A\subset X\colon {\mathbf  P}(A)\geqslant 0,

Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий; другими словами, если {\displaystyle A_{i}A_{j}=\varnothing }A_{i}A_{j}=\varnothing  при {\displaystyle i\neq j}i\neq j, то {\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}{\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}.

Конечность (ограниченность единицей): {\displaystyle \mathbf {P} (X)=1}{\mathbf  P}(X)=1,

В случае если элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.

Вероятностная мера может быть определена не для всех подмножеств множества {\displaystyle X}X. Предполагается, что она определена на некоторой сигма-алгебре {\displaystyle \Omega }\Omega  подмножеств[6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность {\displaystyle (X,\Omega ,P)}(X,\Omega ,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным Свойства вероятности

Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности.

1) вероятность невозможного события (пустого множества {\displaystyle \varnothing }\varnothing ) равна нулю:

{\displaystyle \mathbf {P} \{\varnothing \}=0;}{\mathbf  {P}}\{\varnothing \}=0;

Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю.

2) если событие A включается («входит») в событие B, то есть {\displaystyle A\subset B}A\subset B, то есть наступление события A влечёт также наступление события B, то:

{\displaystyle \mathbf {P} \{A\}\leqslant \mathbf {P} \{B\};}{\mathbf  {P}}\{A\}\leqslant {\mathbf  {P}}\{B\};

Это следует из неотрицательности и аддитивности вероятностной меры, так как событие {\displaystyle B}B, возможно, «содержит» кроме события {\displaystyle A}A ещё какие-то другие события, несовместные с {\displaystyle A}A.

3) вероятность каждого события {\displaystyle A}A находится от 0 до 1, то есть удовлетворяет неравенствам:

{\displaystyle 0\leqslant \mathbf {P} \{A\}\leqslant 1;}0\leqslant {\mathbf  {P}}\{A\}\leqslant 1;

Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в {\displaystyle X}X, а для {\displaystyle X}X аксиоматически предполагается {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

4) вероятность наступления события {\displaystyle B\setminus A}B\setminus A, где {\displaystyle A\subset B}A\subset B, заключающегося в наступлении события {\displaystyle B}B при одновременном ненаступлении события {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{B\setminus A\}=\mathbf {P} \{B\}-\mathbf {P} \{A\};}{\mathbf  {P}}\{B\setminus A\}={\mathbf  {P}}\{B\}-{\mathbf  {P}}\{A\};

Это следует из аддитивности вероятности для несовместных событий и из того, что события {\displaystyle A}A и {\displaystyle B\setminus A}B\setminus A являются несовместными по условию, а их сумма равна событию {\displaystyle B}B.

5) вероятность события {\displaystyle {\bar {A}}}{\bar  {A}}, противоположного событию {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{{\bar {A}}\}=1-\mathbf {P} \{A\};}{\mathbf  {P}}\{{\bar  {A}}\}=1-{\mathbf  {P}}\{A\};

Это следует из предыдущего свойства, если в качестве множества {\displaystyle B}B использовать всё и учесть, что {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий {\displaystyle A}A и {\displaystyle B}B равна:

{

sergei-komissar8475
Звёздный ветер — процесс истечения вещества из звёзд в межзвёздное пространство.
Звёздный ветер может играть важную роль в звёздной эволюции: так как в результате этого процесса происходит уменьшение массы звезды, то от его интенсивности зависит срок жизни звезды.

Звёздный ветер является переноса вещества на значительные расстояния в космосе. Помимо того, что он сам по себе состоит из вещества, истекающего из звёзд, он может воздействовать на окружающее межзвёздное вещество, передавая ему часть своей кинетической энергии. Так, форма эмиссионной туманности NGC 7635 «Пузырь» образовалась в результате такого воздействия.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Начерти в тетради фигуру состоящую из стольких же клеток, что и данная фигура, но другой формы
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

I.B.Petrishchev
nebo2020
Шабунина-Евгения1883
o-pavlova-8635
irinaastapova2011
Misyura_Viktoriya1683
alexseyzyablov
ohussyev
armusaeff
Murad Gushcharin
olgavlad199
Вайнер
ТигранКалмыкова
Vladimirovich351
Стадник620