1) делилось на 3 Чтобы число делилось на 3, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 3 (4+9+7+*)=(20+*) должно быть кратно 3 вместо звездочки можно поставить 1; 4 или 7 ответ. 4971 4974 4977
2) делилось на 10 Чтобы число делилось на 10, необходимо и достаточно, чтобы оно оканчивалось на 0 ответ. 4970
3) было кратно 9 Чтобы число делилось на 9, необходимо и достаточно, чтобы сумма цифр этого числа делилась на 9 (4+9+7+*)=(20+*) должно быть кратно 9 вместо звездочки можно поставить 7 ответ. 4977
mihailpolehin8
26.04.2020
Десятичная дробь есть результат деления единицы на десять, сто, тысячу и т. д. частей. Эти дроби очень удобны для вычислений, так как они основаны на той же позиционной системе, на которой построены счёт и запись целых чисел. Благодаря этому запись и правила действий с десятичными дробями фактически те же, что и для целых чисел. При записи десятичных дробей нет необходимости отмечать знаменатель, это определяется местом, которое занимает соответствующая цифра. Сначала пишется целая часть числа, затем справа ставится десятичная точка. Первая цифра после десятичной точки означает число десятых, вторая – число сотых, третья – число тысячных и т. д. Цифры, расположенные после десятичной точки, называются десятичными знаками. П р и м е р . Одно из преимуществ десятичных дробей – они легко приводятся к виду обыкновенных: число после десятичной точки (в нашем случае 5047) – это числитель; знаменатель же равен n–ой степени 10, где n - количество десятичных знаков (в нашем случае n = 4): Если десятичная дробь не содержит целой части, то перед десятичной точкой ставится ноль: Свойства десятичных дробей. 1. Десятичная дробь не меняется, если справа добавить нули: 13.6 =13.6000. 2. Десятичная дробь не меняется, если удалить нули, расположенные в конце десятичной дроби: 0.00123000 = 0.00123 . Внимание! Нельзя удалять нули, расположенные не в конце десятичной дроби! 3. Десятичная дробь возрастает в 10, 100, 1000 и т. д. раз, если перенести десятичную точку на одну, две, три и т. д. позиций вправо: 3.675 ---> 367.5 (дробь возросла в 100 раз) . 4.Десятичная дробь уменьшается в 10, 100, 1000 и т. д. раз, если перенести десятичную точку на одну, две, три и т. д. позиций влево: 1536.78 ---> 1.53678 (дробь уменьшилась в 1000 раз) . Эти свойства позволяют быстро умножать и делить десятичные дроби на 10, 100, 1000 и т. д. Периодическая десятичная дробь содержит бесконечно повторяющуюся группу цифр, называемую периодом. Период записывается в скобках. Например, 0.12345123451234512345… = 0.(12345). П р и м е р . Если разделить 47 на 11, то получим 4.27272727… = 4.(27).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Как правильно записать решение 90-(40-24: 3): 4*6+3*5