Пошаговое объяснение:
1)
2)
3)
4)
Первый рабочий может выполнить некоторую работу на 4 часа быстрее, чем второй. Вначале они 2 часа работали вместе, после чего оставшуюся работу один первый выполнил за 1 час. За какое время может выполнить всю работу 2 рабочий?
Примем всю работу за единицу.
Пусть первый рабочий выполняет всю работу за х часов.
Тогда второй - за х+4 часа.
За 1час первый выполняет 1/х часть работы, второй 1(\х+4) - это производительность каждого из них.
При совместной работе за 1 час они выполняют
1/х+1/(х+4)=(2х+4):(х²+4х) часть работы
за 2 часа было выполнено
2(2х+4):(х²+4х)
после чего осталось выполнить
1-2(2х+4):(х²+4х)=(х²-8):(х²-4х) часть работы
Эту работу первый рабочий выполнил за 1 ч
Время выполнения находят делением работы на производительность:
[(х²-8):(х²-4х)]:1/х=1
откуда получаем
х²-8=х-4
х²-х-4=0
Корни этого квадратного уравнения 4 и -3 (не подходит)
Первый рабочий может выполнить всю работу за 4 часа.
Второй рабочий может выполнить всю работу за 4=4=8 (часов)
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите наиболее удобным
Пошаговое объяснение:
1) 1,3 : 0, 65 = 2
2) 0,45 : 1,5 = 0,3
3) 7,2 : 1,2 = 6
1) 1,7 : 6,8 =0,25
2) 4,5 : 0,9 =5
3) 6,9 : 0,23= 30
4) 1,1 : 5,5=0,2
1) 0,25 : 0,5=0,5
2) 3,6 : 0,45=8
3) 0,76 : 0,19=4
1) 0,25 : 0,5=0,5
2) 18,6 : 3,1=6
3) 5,7 : 1,9 =3