plv-57
?>

За 3 пачки салфеток заплатили 12р .пачка бумажных полотенец на 20р. дороже пачки салфеток по какой цене плотенца.

Математика

Ответы

shchepinasm
Пачка бумажных полотенец продают по цене 24 р.
Ilin1022
12:3=4 (руб)-1 пачка салфеток

4+20=24 (руб)-1 пачка бумажных полотенец

ответ:24 руб.
astenSA

Докажем с математической индукций 

база 1 верна 

теперь переход n->n+1

\begin{lgathered}1^3+2^3+3^3+...n^3=\frac{n^2(n+1)^2}{4}\\\end{lgathered}13+23+33+...n3=4n2(n+1)2

переход

\begin{lgathered}1^3+2^3+3^3+...n^3+(n+1)^3=\frac{(n+1)^2(n+2)^2}{4}\\\end{lgathered}13+23+33+...n3+(n+1)3=4(n+1)2(n+2)2

 так как  предыдущий ряд равен \frac{n^2(n+1)^2}{4}4n2(n+1)2

 то нужно доказать что \begin{lgathered}\frac{(n+1)^2*n^2}{4}+(n+1)^3=\frac{(n+1)^2(n+2)^2}{4}\\\end{lgathered}4(n+1)2∗n2+(n+1)3=4(n+1)2(n+2)2

докажем 

\begin{lgathered}\frac{(n+1)^2*n^2}{4}+(n+1)^3=\frac{(n+1)^2(n+2)^2}{4}\\ \frac{(n+1)^2*n^2+4(n+1)^3}{4}=\frac{(n+1)^2*(n+2)^2}{4}\\ \frac{(n+1)^2(n^2+4(n+1))}{4}=\frac{(n+1)^2(n+2)^2}{4}\\ \frac{(n+1)^2(n+2)^2}{4}=\frac{(n+1)^2(n+2)^2}{4}\\\end{lgathered}4(n+1)2∗n2+(n+1)3=4(n+1)2(n+2)24(n+1)2∗n2+4(n+1)3=4(n+1)2∗(n+2)24(n+1)2(n2+4(n+1))=4(n+1)2(n+2)24(n+1)2(n+2)2=4(n+1)2(n+2)2

Доказано

2)\begin{lgathered}1^3+3^3+5^3...+(2n-1)^3=n^2(2n^2-1)\\ n=1\ verno\\ n->n+1\\ 1^3+3^3+5^3...(2n-1)^3+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ n^2(2n^2-1)+(2n+1)^3=(n+1)^2(2(n+1)^2-1)\\ (n+1)^2(2n^2+4n+1)=(n+1)^2(2n^2+4n+1)\end{lgathered}13+33+53...+(2n−1)3=n2(2n2−1)n=1 vernon−>n+113+33+53...(2n−1)3+(2n+1)3=(n+1)2(2(n+1)2−1)n2(2n2−1)+(2n+1)3=(n+1)2(2(n+1)2−1)(n+1)2(2n2+4n+1)=(n+1)2(2n2+4n+1)

Доказано

fta1309
Пусть 1^3+2^3+...+n^3=(1+ 2+ ...+ n)^2=А(очевидно, что А>0)
1) n=1
имеем 1^3=1^2. Верно.
2) Допустим, что наше равенство верно для числа n. Докажем, что равенство верно и при n+1.
Тогда исходное равенство примет вид 
(1^3+2^3+...+n^3)+(n+1)^3=((1+ 2+ ...+ n)+(n+1))^2
A+(n+1)^3=(√А+(n+1))^2
A+(n+1)^3=А+2√А*(n+1)+(n+1))^2
(n+1)^3=2√А*(n+1)+(n+1)^2
Так как n натуральное, то (n+1)>0, поэтому разделим обе части нашего уравнения на (n+1)
(n+1)^2=2√А*+(n+1)
n^2+2n+1=2(1+ 2+ ...+ n)+n+1
n^2+n=2(1+ 2+ ...+ n)
Заметим, что 1+ 2+ ...+ n - сумма арифметической прогрессии с первым членом, равным 1, разностью, равной 1. Тогда количество членов в ней равно n.
Тогда 
n^2+n=2((1+n)/2)*n
n^2+n=n^2+n
Верно.
Значит равенство верно при любых натуральных n

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

За 3 пачки салфеток заплатили 12р .пачка бумажных полотенец на 20р. дороже пачки салфеток по какой цене плотенца.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

oksanashabanovadc3197
Soliyabronzoni
ПаничерскийЕлена
Решите уравнение x-3. 24 = 17. 51
kifstd
dilbaryan76
albina6580
marysya60
korolev-comitet8825
evada2
Герасимова107
TrubnikovKlimenok926
slazurnaya
Serezhkin
grigoriev8
Краева