g(f(x)) - сложная функция
g'(f(x))*f(x) произведение ПРОИЗВОДНОЙ от сложной функцииg(f(x)) g(f(x)) на функцию f(x)
Пошаговое объяснение:
1). g(f(x)) - сложная функция. Сначала находим значение функции f(x) . Наверняка есть формула для f(x), просто подставляем значение х. То число, которое получили подставляем в формулу, которая задаёт функцию g(x).
2) Производная сложной функции находится по формуле:
g(f(x))' = g'(f(x))·f'(x).
Твоё задание наверное связано с необходимостью составление уравнения касательной. Давай конкретный пример.
Поделитесь своими знаниями, ответьте на вопрос:
Случайное отклонение размера детали от номинала при изготовлении ее на данном станке имеет нулевое ожидание и среднее квадратическое отклонение, равное 5мк. сколько необходимо изготовить деталей, чтобы с вероятностью не менее 0, 9 среди них была хотя бы одна годная, если для годной детали допустимо отклонение размера от номинала не более, чем на 2мк?
Все-таки считается, что случайная величина Х - отклонение размера детали от номинала - распределена нормально с указанными параметрами.
Тогда можно найти вероятность того, что наугад взятая деталь окажется стандартной:
P(|X-0|<4)=2Ф(4/8)=2Ф(1/2)=0.383 (из таблицы функции Лапласа).
Пришли к такой стандартной задаче: Событие А (деталь стандартна) имеет вероятность 0.383. Сколько необходимо провести испытаний, чтобы с вероятностью не менее 0.99 это событие появилось хотя бы один раз. Это можно вычислить либо по формуле Бернулли, либо по формуле вероятности появления хотя бы одного из независимых событий. Если это число раз обозначить n, то для этого n получим неравенство:
1-(1-0.383)^n > 0.99 или 0.617^n < 0.01