21 тугрик
Пошаговое объяснение:
Обозначим кол-во монет номиналом 7 тугриков как x, а кол-во монет номиналом 14 тугриков как y. Также обозначим цену одной овцы как P.
Тогда можем записать каждое из условий в виде математического равенства:
1) "Если Гулливер возьмёт все свои монеты номиналом 7 тугриков, то ему не хватит 105 тугриков, чтобы купить 6 овец."
(1) 7·x = 6·P - 105
2) "Если Гулливер возьмёт все свои монеты номиналом 14 тугриков, то ему не хватит 105 тугриков, чтобы купить 7 овец."
(2) 14·y = 7·P - 105
3) "Если Гулливер возьмёт все свои монеты, то ему не хватит 105 тугриков, чтобы купить 8 овец."
(3) 7·x + 14·y = 8·P - 105
Сложим первое и второе уравнение:
7·x + 14·y = 6·P - 105 + 7·P - 105
(4) 7·x + 14·y = 13·P - 210
Видим, что получили выражение, очень похожее на третье условие. Обозначим его как четвертое условие.
Приравняем правые части третьего и четвертого условий:
8·P - 105 = 13·P - 210
5·P = 105
P = 21
ДАНО
Y = (x² + 9)/x
ИССЛЕДОВАНИЕ
1. Область определения. Деление на ноль в знаменателе.
Х≠ 1.
Х∈(-∞;0)∪(0;+∞)
2. Вертикальная асимптота: Х= 1.
3. Пересечение с осью Х. Y(x) = 0 - нет.
4. Пересечение с осью У - нет
5. Наклонная асимптота
k = lim(+∞)Y(x)/x = 4*x/x = 4. Уравнение асимптоты: Y = 4*x.
6. Проверка на чётность.
Y(-x) ≠ Y(x). Y(-x) ≠ - Y(x)
Функция ни четная ни нечетная.
7. Поведение в точке разрыва.
lim(->0-) Y(x) = -∞.
lim(->0+) Y(x) = +∞
8, Первая производная.
6. Локальные экстремумы.
Y'(x) = 0, x1 = - 3/2, x2 = 3/2
Максимум Y(-3/2)= .-12.
Минимум Y(3/2) = 12.
7. Участки монотонности функции.
Возрастает - Х∈(-∞;-3/2]∪[3/2;+∞).
Убывает - Х∈[-3/2;0)∪(0;3/2]
8. Вторая производная.
Корней нет. Точек перегиба (на графике) - нет.
9. Выпуклая - "горка" - Х∈(-∞;0). Вогнутая - "ложка" - Х∈(0;+∞)
10. График в приложении
Поделитесь своими знаниями, ответьте на вопрос:
Плз)! (a-1/a+1 - a+1/a-1)· 1-a²/4a =