5/6 >5/8,_ 17/30< 2/3,_ 79/68 >5/113,_ 11/12 < 19/20,_ 2³/₁₆ < 2⁹/₁₆
Пошаговое объяснение:
1) При сравнении дробей с одинаковым числителем больше та дробь, знаменатель которой меньше.
5/6> 5/8 ( На чем больше частей делится что-то, тем меньше получится каждая часть).
2) 17/30 и 2/3 приведем к общему знаменателю:
17/30 <20/30 ( при сравнении дробей с равными знаменателями больше та, у которой больше числитель. Если что-то разделить на 30 частей , то 17 частей меньше. чем 20 таких же).
3) 79/68 и 5/113
Первое число - неправильная дробь, оно больше едииницы. Второе - меньше единицы. Поэтому
79/68 > 5/113
4) 11/12 и 19/20
Первому числу до целого недостает 1/12, второму 1/20.
Т.к. 1/12> 1/20, то 19/20>11/12 ( см. объяснение п. 1)
5) Из смешанных чисел с равной целой частью больше та, у которого больше дробная часть. 2=2, 9/16>3/16, поэтому 2 целых и 3/16 меньше, чем 2 целых и 9/16.
Поделитесь своими знаниями, ответьте на вопрос:
Вгороде имеется n=4 оптовых баз. вероятность того, что требуемого сорта товар отсутствует на этих базах, одинакова и равна p=0.3. составить закон распределения числа баз, на которых искомый товар отсутствует в данный момент.
Соответствующие вероятности:
P0=(0,7)⁴=0,2401
P1=4*(0,7)³*0,3=0,4116
P2=6*(0,7)²*(0,3)²=0,2646
P3=4*0,7*(0,3)³=0,0756
P4=(0,3)⁴=0,0081
Так как данные события события несовместны и притом образуют полную группу событий, то должно выполняться равенство P0+P1+P2+P3+P4=1. Подставляя найденные вероятности, убеждаемся, что так оно и есть. Значит, вероятности найдены верно.
Закон распределения данной дискретной случайной величины составим в виде таблицы, где Xi - значения случайной величины. Pi- соответствующие вероятности.
Xi 0 1 2 3 4
Pi 0,2401 0,4116 0,2646 0,0756 0,0081